Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form...How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events.展开更多
Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source ...Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source correlation investigation.This objective is achieved through a meticulous analysis of well-log responses,Rock-Eval pyrolysis,and biomarker data.The analysis of Total Organic Carbon across 31 samples representing Paleozoic formations in the Siwa A-1X well reveals a spectrum of organic richness ranging from 0.17 wt%to 2.04 wt%,thereby highlighting diverse levels of organic content and the presence of both Type II and Type III kerogen.Examination of the fingerprint characteristics of eight samples from the well suggests that the Dhiffah Formation comprises a blend of terrestrial and marine organic matter.Notably,a significant contribution from more oxidized residual organic matter and gas-prone Type III kerogen is observed.Contrarily,the Desouky and Zeitoun formations exhibit mixed organic matter indicative of a transitional environment,and thus featuring a pronounced marine influence within a more reducing setting,which is associated with Type II kerogen.Through analysis of five oil samples from different wells—SIWA L-1X,SIWA R-3X,SIWA D-1X,PTAH 5X,and PTAH 6X,it is evident that terrestrial organic matter,augmented by considerable marine input,was deposited in an oxidizing environment,and contains Type III kerogen.Geochemical scrutiny confirms the coexistence of mixed terrestrial organic matter within varying redox environments.Noteworthy is the uniformity of identified kerogen Types II and III across all samples,known to have potential for hydrocarbon generation.The discovery presented in this paper unveils captivating prospects concerning the genesis of oil in the Jurassic Safa reservoir,suggesting potential links to Paleozoic sources or even originating from the Safa Member itself.These revelations mark a substantial advancement in understanding source rock dynamics and their intricate relationship with reservoir oils within the Siwa Basin.By illuminating the processes of hydrocarbon genesis in the region,this study significantly enriches our knowledge base.展开更多
As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in H...As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in HEIs encompasses handling huge amounts of data coming from different sources.This paper reviews big data and analyses the cases from the literature regarding quality assurance(QA)in HEIs.It also outlines a framework that can address the big data challenge in HEIs to handle QA monitoring using BI dashboards and a prototype dashboard is presented in this paper.The dashboard was developed using a utilisation tool to monitor QA in HEIs to provide visual representations of big data.The prototype dashboard enables stakeholders to monitor compliance with QA standards while addressing the big data challenge associated with the substantial volume of data managed by HEIs’QA systems.This paper also outlines how the developed system integrates big data from social media into the monitoring dashboard.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as b...The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.展开更多
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s...Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.展开更多
Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross ...Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross a wide spectrum in military and civilian areas. With the rapid evolution of computers and the proliferation of micro-mechanical/electrical systems sensors, the utilization of MDF is being popularized in research and applications. This paper focuses on application of MDF for high quality data analysis and processing in measurement and instrumentation. A practical, general data fusion scheme was established on the basis of feature extraction and merge of data from multiple sensors. This scheme integrates artificial neural networks for high performance pattern recognition. A number of successful applications in areas of NDI (Non-Destructive Inspection) corrosion detection, food quality and safety characterization, and precision agriculture are described and discussed in order to motivate new applications in these or other areas. This paper gives an overall picture of using the MDF method to increase the accuracy of data analysis and processing in measurement and instrumentation in different areas of applications.展开更多
We first analyzed GPS precipitable water vapor(GPS/PWV) available from a ground-based GPS observation network in Guangdong from 1 August 2009 to 27 August 2012 and then developed a method of quality control before GPS...We first analyzed GPS precipitable water vapor(GPS/PWV) available from a ground-based GPS observation network in Guangdong from 1 August 2009 to 27 August 2012 and then developed a method of quality control before GPS/PWV data is assimilated into the GRAPES 3DVAR system. This method can reject the outliers effectively. After establishing the criterion for quality control, we did three numerical experiments to investigate the impact on the precipitation forecast with and without the quality-controlled GPS/PWV data before they are assimilated into the system.In the numerical experiments, two precipitation cases(on 6 to 7 May, 2010 and 27 to 28 April, 2012 respectively) that occurred in the annually first raining season of Guangdong were selected. The results indicated that after quality control,only the GPS/PWV data that deviates little from the NCEP/PWV data can be assimilated into the system, has reasonable adjustment of the initial water vapor above Guangdong, and eventually improves the intensity and location of 24-h precipitation forecast significantly.展开更多
Since the British National Archive put forward the concept of the digital continuity in 2007,several developed countries have worked out their digital continuity action plan.However,the technologies of the digital con...Since the British National Archive put forward the concept of the digital continuity in 2007,several developed countries have worked out their digital continuity action plan.However,the technologies of the digital continuity guarantee are still lacked.At first,this paper analyzes the requirements of digital continuity guarantee for electronic record based on data quality theory,then points out the necessity of data quality guarantee for electronic record.Moreover,we convert the digital continuity guarantee of electronic record to ensure the consistency,completeness and timeliness of electronic record,and construct the first technology framework of the digital continuity guarantee for electronic record.Finally,the temporal functional dependencies technology is utilized to build the first integration method to insure the consistency,completeness and timeliness of electronic record.展开更多
This study proposes a method to derive the climatological limit thresholds that can be used in an operational/historical quality control procedure for Chinese high vertical resolution(5–10 m)radiosonde temperature an...This study proposes a method to derive the climatological limit thresholds that can be used in an operational/historical quality control procedure for Chinese high vertical resolution(5–10 m)radiosonde temperature and wind speed data.The whole atmosphere is divided into 64 vertical bins,and the profiles are constructed by the percentiles of the values in each vertical bin.Based on the percentile profiles(PPs),some objective criteria are developed to obtain the thresholds.Tibetan Plateau field data are used to validate the effectiveness of the method in the application of experimental data.The results show that the derived thresholds for 120 operational stations and 3 experimental stations are effective in detecting the gross errors,and those PPs can clearly and instantly illustrate the characteristics of a radiosonde variable and reveal the distribution of errors.展开更多
The physical parameters of the subsurface from the environmental site investigation are important for geoscientists and engineers to understand and very low cost-effective method, especially when combined with geophys...The physical parameters of the subsurface from the environmental site investigation are important for geoscientists and engineers to understand and very low cost-effective method, especially when combined with geophysical (seismic) and geotechnical (borehole) surveys. These parameters can be estimated from other obtained parameters. In this study, P-wave velocities of materials (soils and rocks) are studied both in the laboratory and field measurement. The obtained P-wave velocities are then compared with the engineering parameters such N values, rock quality, friction angle, relative density, velocity index, density and penetration strength from boreholes. The empirical correlations were also found in this study for selected parameters. The estimation of engineering parameters from P-wave seismic velocity values is applicable for tropical environmental study. It is found that, the ratio (VFIELD/VLAB) when squared, was numerically close to the value of percentage RQD. We found that the empirical correlation for tropical environmental study is VP = 23.605(N) - 160.43 and the regression found is 0.9315 (93.15%). Meanwhile, the empirical correlation between P-wave velocities and RQD values is found as VP = 21.951(RQD) + 0.1368 and the regression found is 0.8377 (83.77%). The correlation between apparent P-wave velocities with penetration strength for both study sites are found as and the regression coefficient is found as 0.9756. Thus, this study helps for the estimation and prediction the properties of the subsurface material (soils and rocks) especially in reducing the cost of investigation and increase the understanding of the Earth’s subsurface characterizations physical parameters.展开更多
Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are g...Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed.展开更多
Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oi...Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.展开更多
Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring syste...Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring systems,however,generally focus only on water quality data collection,ignoring data analysis and data mining.In addition,some dirty data and data loss may occur due to power failures or transmission failures,further affecting data analysis and its application.In order to meet these needs,by using Internet of things,cloud computing,and big data technologies,we designed and implemented a water quality monitoring data intelligent service platform in C#and PHP language.The platform includes monitoring point addition,monitoring point map labeling,monitoring data uploading,monitoring data processing,early warning of exceeding the standard of monitoring indicators,and other functions modules.Using this platform,we can realize the automatic collection of water quality monitoring data,data cleaning,data analysis,intelligent early warning and early warning information push,and other functions.For better security and convenience,we deployed the system in the Tencent Cloud and tested it.The testing results showed that the data analysis platform could run well and will provide decision support for water resource protection.展开更多
Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on dat...Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.展开更多
This paper presents a methodology to determine three data quality (DQ) risk characteristics: accuracy, comprehensiveness and nonmembership. The methodology provides a set of quantitative models to confirm the informat...This paper presents a methodology to determine three data quality (DQ) risk characteristics: accuracy, comprehensiveness and nonmembership. The methodology provides a set of quantitative models to confirm the information quality risks for the database of the geographical information system (GIS). Four quantitative measures are introduced to examine how the quality risks of source information affect the quality of information outputs produced using the relational algebra operations Selection, Projection, and Cubic Product. It can be used to determine how quality risks associated with diverse data sources affect the derived data. The GIS is the prime source of information on the location of cables, and detection time strongly depends on whether maps indicate the presence of cables in the construction business. Poor data quality in the GIS can contribute to increased risk or higher risk avoidance costs. A case study provides a numerical example of the calculation of the trade-offs between risk and detection costs and provides an example of the calculation of the costs of data quality. We conclude that the model contributes valuable new insight.展开更多
This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communi...This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.展开更多
Rock quality designation(RQD)has been considered as a one-dimensional jointing degree property since it should be determined by measuring the core lengths obtained from drilling.Anisotropy index of jointing degree(AI_...Rock quality designation(RQD)has been considered as a one-dimensional jointing degree property since it should be determined by measuring the core lengths obtained from drilling.Anisotropy index of jointing degree(AI_(jd))was formulated by Zheng et al.(2018)by considering maximum and minimum values of RQD for a jointed rock medium in three-dimensional space.In accordance with spacing terminology by ISRM(1981),defining the jointing degree for the rock masses composed of extremely closely spaced joints as well as for the rock masses including widely to extremely widely spaced joints is practically impossible because of the use of 10 cm as a threshold value in the conventional form of RQD.To overcome this limitation,theoretical RQD(TRQD_(t))introduced by Priest and Hudson(1976)can be taken into consideration only when the statistical distribution of discontinuity spacing has a negative exponential distribution.Anisotropy index of the jointing degree was improved using TRQD_(t) which was adjusted to wider joint spacing by considering Priest(1993)’s recommendation on the use of variable threshold value(t)in TRQD_(t) formulation.After applications of the improved anisotropy index of a jointing degree(AI'_(jd))to hypothetical jointed rock mass cases,the effect of persistency of joints on structural anisotropy of rock mass was introduced to the improved AI'_(jd) formulation by considering the ratings of persistency of joints as proposed by Bieniawski(1989)’s rock mass rating(RMR)classification.Two real cases were assessed in the stratified marl and the columnar basalt using the weighted anisotropy index of jointing degree(W_AI'_(jd)).A structural anisotropy classification was developed using the RQD classification proposed by Deere(1963).The proposed methodology is capable of defining the structural anisotropy of a rock mass including joint pattern from extremely closely to extremely widely spaced joints.展开更多
Sea surface temperature(SST)data obtained from coastal stations in Jiangsu,China during 20102014 are quality controlled before analysis of their characteristic semidiurnal and seasonal cycles,including the correlation...Sea surface temperature(SST)data obtained from coastal stations in Jiangsu,China during 20102014 are quality controlled before analysis of their characteristic semidiurnal and seasonal cycles,including the correlation with the variation of the tide.Quality control of data includes the validation of extreme values and checking of hourly values based on temporally adjacent data points,with 0.15℃/h considered a suitable threshold for detecting abnormal values.The diurnal variation amplitude of the SST data is greater in spring and summer than in autumn and winter.The diurnal variation of SST has bimodal structure on most days,i.e.,SST has a significant semidiurnal cycle.Moreover,the semidiurnal cycle of SST is negatively correlated with the tidal data from March to August,but positively correlated with the tidal data from October to January.Little correlation is detected in the remaining months because of the weak coastal offshore SST gradients.The quality control and understanding of coastal SST data are particularly relevant with regard to the validation of indirect measurements such as satellite-derived data.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation (IITP)grant funded by the Korean government (MSIT) (No.2022-0-00369)by the NationalResearch Foundation of Korea Grant funded by the Korean government (2018R1A5A1060031,2022R1F1A1065664).
文摘How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events.
基金the research project is funded by Abdullah Alrushaid Chair for Earth Science Remote Sensing Research at King Saud University,Riyadh,Saudi Arabia.。
文摘Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source correlation investigation.This objective is achieved through a meticulous analysis of well-log responses,Rock-Eval pyrolysis,and biomarker data.The analysis of Total Organic Carbon across 31 samples representing Paleozoic formations in the Siwa A-1X well reveals a spectrum of organic richness ranging from 0.17 wt%to 2.04 wt%,thereby highlighting diverse levels of organic content and the presence of both Type II and Type III kerogen.Examination of the fingerprint characteristics of eight samples from the well suggests that the Dhiffah Formation comprises a blend of terrestrial and marine organic matter.Notably,a significant contribution from more oxidized residual organic matter and gas-prone Type III kerogen is observed.Contrarily,the Desouky and Zeitoun formations exhibit mixed organic matter indicative of a transitional environment,and thus featuring a pronounced marine influence within a more reducing setting,which is associated with Type II kerogen.Through analysis of five oil samples from different wells—SIWA L-1X,SIWA R-3X,SIWA D-1X,PTAH 5X,and PTAH 6X,it is evident that terrestrial organic matter,augmented by considerable marine input,was deposited in an oxidizing environment,and contains Type III kerogen.Geochemical scrutiny confirms the coexistence of mixed terrestrial organic matter within varying redox environments.Noteworthy is the uniformity of identified kerogen Types II and III across all samples,known to have potential for hydrocarbon generation.The discovery presented in this paper unveils captivating prospects concerning the genesis of oil in the Jurassic Safa reservoir,suggesting potential links to Paleozoic sources or even originating from the Safa Member itself.These revelations mark a substantial advancement in understanding source rock dynamics and their intricate relationship with reservoir oils within the Siwa Basin.By illuminating the processes of hydrocarbon genesis in the region,this study significantly enriches our knowledge base.
文摘As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in HEIs encompasses handling huge amounts of data coming from different sources.This paper reviews big data and analyses the cases from the literature regarding quality assurance(QA)in HEIs.It also outlines a framework that can address the big data challenge in HEIs to handle QA monitoring using BI dashboards and a prototype dashboard is presented in this paper.The dashboard was developed using a utilisation tool to monitor QA in HEIs to provide visual representations of big data.The prototype dashboard enables stakeholders to monitor compliance with QA standards while addressing the big data challenge associated with the substantial volume of data managed by HEIs’QA systems.This paper also outlines how the developed system integrates big data from social media into the monitoring dashboard.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003,2017YFC1405300)
文摘Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.
文摘Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross a wide spectrum in military and civilian areas. With the rapid evolution of computers and the proliferation of micro-mechanical/electrical systems sensors, the utilization of MDF is being popularized in research and applications. This paper focuses on application of MDF for high quality data analysis and processing in measurement and instrumentation. A practical, general data fusion scheme was established on the basis of feature extraction and merge of data from multiple sensors. This scheme integrates artificial neural networks for high performance pattern recognition. A number of successful applications in areas of NDI (Non-Destructive Inspection) corrosion detection, food quality and safety characterization, and precision agriculture are described and discussed in order to motivate new applications in these or other areas. This paper gives an overall picture of using the MDF method to increase the accuracy of data analysis and processing in measurement and instrumentation in different areas of applications.
基金Natural Science Foundation of Guangdong Province(2016A030313140)Project 973(2015CB452802)+1 种基金Natural Science Foundation of China(41405104)Science and Technology Program of Guangzhou City(201604020012)
文摘We first analyzed GPS precipitable water vapor(GPS/PWV) available from a ground-based GPS observation network in Guangdong from 1 August 2009 to 27 August 2012 and then developed a method of quality control before GPS/PWV data is assimilated into the GRAPES 3DVAR system. This method can reject the outliers effectively. After establishing the criterion for quality control, we did three numerical experiments to investigate the impact on the precipitation forecast with and without the quality-controlled GPS/PWV data before they are assimilated into the system.In the numerical experiments, two precipitation cases(on 6 to 7 May, 2010 and 27 to 28 April, 2012 respectively) that occurred in the annually first raining season of Guangdong were selected. The results indicated that after quality control,only the GPS/PWV data that deviates little from the NCEP/PWV data can be assimilated into the system, has reasonable adjustment of the initial water vapor above Guangdong, and eventually improves the intensity and location of 24-h precipitation forecast significantly.
基金This work is supported by the NSFC(Nos.61772280,61772454)the Changzhou Sci&Tech Program(No.CJ20179027)the PAPD fund from NUIST.Prof.Jin Wang is the corresponding author。
文摘Since the British National Archive put forward the concept of the digital continuity in 2007,several developed countries have worked out their digital continuity action plan.However,the technologies of the digital continuity guarantee are still lacked.At first,this paper analyzes the requirements of digital continuity guarantee for electronic record based on data quality theory,then points out the necessity of data quality guarantee for electronic record.Moreover,we convert the digital continuity guarantee of electronic record to ensure the consistency,completeness and timeliness of electronic record,and construct the first technology framework of the digital continuity guarantee for electronic record.Finally,the temporal functional dependencies technology is utilized to build the first integration method to insure the consistency,completeness and timeliness of electronic record.
基金supported by the National Innovation Project for Meteorological Science and Technology grant number CMAGGTD003-5the National Key R&D Program of China grant number2017YFC1501801。
文摘This study proposes a method to derive the climatological limit thresholds that can be used in an operational/historical quality control procedure for Chinese high vertical resolution(5–10 m)radiosonde temperature and wind speed data.The whole atmosphere is divided into 64 vertical bins,and the profiles are constructed by the percentiles of the values in each vertical bin.Based on the percentile profiles(PPs),some objective criteria are developed to obtain the thresholds.Tibetan Plateau field data are used to validate the effectiveness of the method in the application of experimental data.The results show that the derived thresholds for 120 operational stations and 3 experimental stations are effective in detecting the gross errors,and those PPs can clearly and instantly illustrate the characteristics of a radiosonde variable and reveal the distribution of errors.
文摘The physical parameters of the subsurface from the environmental site investigation are important for geoscientists and engineers to understand and very low cost-effective method, especially when combined with geophysical (seismic) and geotechnical (borehole) surveys. These parameters can be estimated from other obtained parameters. In this study, P-wave velocities of materials (soils and rocks) are studied both in the laboratory and field measurement. The obtained P-wave velocities are then compared with the engineering parameters such N values, rock quality, friction angle, relative density, velocity index, density and penetration strength from boreholes. The empirical correlations were also found in this study for selected parameters. The estimation of engineering parameters from P-wave seismic velocity values is applicable for tropical environmental study. It is found that, the ratio (VFIELD/VLAB) when squared, was numerically close to the value of percentage RQD. We found that the empirical correlation for tropical environmental study is VP = 23.605(N) - 160.43 and the regression found is 0.9315 (93.15%). Meanwhile, the empirical correlation between P-wave velocities and RQD values is found as VP = 21.951(RQD) + 0.1368 and the regression found is 0.8377 (83.77%). The correlation between apparent P-wave velocities with penetration strength for both study sites are found as and the regression coefficient is found as 0.9756. Thus, this study helps for the estimation and prediction the properties of the subsurface material (soils and rocks) especially in reducing the cost of investigation and increase the understanding of the Earth’s subsurface characterizations physical parameters.
基金funded by the National Natural Science Foundation of China(Grant No.41941019)the State Key Laboratory of Hydroscience and Engineering(Grant No.2019-KY-03)。
文摘Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed.
基金National Natural Science Foundation of China(Grant No.42002133,42072150)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-06)for the financial supports and permissions to publish this paper
文摘Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.
基金the National Natural Science Foundation of China(No.61304208)Scientific Research Fund of Hunan Province Education Department(18C0003)+5 种基金Researchproject on teaching reform in colleges and universities of Hunan Province Education Department(20190147)Changsha City Science and Technology Plan Program(K1501013-11)Hunan NormalUniversity University-Industry Cooperation.This work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data PropertyUniversities of Hunan ProvinceOpen projectgrant number 20181901CRP04.
文摘Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring systems,however,generally focus only on water quality data collection,ignoring data analysis and data mining.In addition,some dirty data and data loss may occur due to power failures or transmission failures,further affecting data analysis and its application.In order to meet these needs,by using Internet of things,cloud computing,and big data technologies,we designed and implemented a water quality monitoring data intelligent service platform in C#and PHP language.The platform includes monitoring point addition,monitoring point map labeling,monitoring data uploading,monitoring data processing,early warning of exceeding the standard of monitoring indicators,and other functions modules.Using this platform,we can realize the automatic collection of water quality monitoring data,data cleaning,data analysis,intelligent early warning and early warning information push,and other functions.For better security and convenience,we deployed the system in the Tencent Cloud and tested it.The testing results showed that the data analysis platform could run well and will provide decision support for water resource protection.
基金supported by the National Natural Science Foundation of China(Grant Nos.41772309 and 51908431)the Outstanding Youth Foundation of Hubei Province,China(Grant No.2019CFA074)。
文摘Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.
基金The National Natural Science Foundation of China (No.70772021,70372004)China Postdoctoral Science Foundation (No.20060400077)
文摘This paper presents a methodology to determine three data quality (DQ) risk characteristics: accuracy, comprehensiveness and nonmembership. The methodology provides a set of quantitative models to confirm the information quality risks for the database of the geographical information system (GIS). Four quantitative measures are introduced to examine how the quality risks of source information affect the quality of information outputs produced using the relational algebra operations Selection, Projection, and Cubic Product. It can be used to determine how quality risks associated with diverse data sources affect the derived data. The GIS is the prime source of information on the location of cables, and detection time strongly depends on whether maps indicate the presence of cables in the construction business. Poor data quality in the GIS can contribute to increased risk or higher risk avoidance costs. A case study provides a numerical example of the calculation of the trade-offs between risk and detection costs and provides an example of the calculation of the costs of data quality. We conclude that the model contributes valuable new insight.
基金supported by the State Grid Science and Technology Project (GEIRI-DL-71-17-002)
文摘This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.
基金supports from the General Directorate of ETIMADEN enterprises during the field studies at Simav open pit mine。
文摘Rock quality designation(RQD)has been considered as a one-dimensional jointing degree property since it should be determined by measuring the core lengths obtained from drilling.Anisotropy index of jointing degree(AI_(jd))was formulated by Zheng et al.(2018)by considering maximum and minimum values of RQD for a jointed rock medium in three-dimensional space.In accordance with spacing terminology by ISRM(1981),defining the jointing degree for the rock masses composed of extremely closely spaced joints as well as for the rock masses including widely to extremely widely spaced joints is practically impossible because of the use of 10 cm as a threshold value in the conventional form of RQD.To overcome this limitation,theoretical RQD(TRQD_(t))introduced by Priest and Hudson(1976)can be taken into consideration only when the statistical distribution of discontinuity spacing has a negative exponential distribution.Anisotropy index of the jointing degree was improved using TRQD_(t) which was adjusted to wider joint spacing by considering Priest(1993)’s recommendation on the use of variable threshold value(t)in TRQD_(t) formulation.After applications of the improved anisotropy index of a jointing degree(AI'_(jd))to hypothetical jointed rock mass cases,the effect of persistency of joints on structural anisotropy of rock mass was introduced to the improved AI'_(jd) formulation by considering the ratings of persistency of joints as proposed by Bieniawski(1989)’s rock mass rating(RMR)classification.Two real cases were assessed in the stratified marl and the columnar basalt using the weighted anisotropy index of jointing degree(W_AI'_(jd)).A structural anisotropy classification was developed using the RQD classification proposed by Deere(1963).The proposed methodology is capable of defining the structural anisotropy of a rock mass including joint pattern from extremely closely to extremely widely spaced joints.
基金The Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOED1402the Youth Science and Technology Foundation of East China Sea Branch,SOA under contract No.201624
文摘Sea surface temperature(SST)data obtained from coastal stations in Jiangsu,China during 20102014 are quality controlled before analysis of their characteristic semidiurnal and seasonal cycles,including the correlation with the variation of the tide.Quality control of data includes the validation of extreme values and checking of hourly values based on temporally adjacent data points,with 0.15℃/h considered a suitable threshold for detecting abnormal values.The diurnal variation amplitude of the SST data is greater in spring and summer than in autumn and winter.The diurnal variation of SST has bimodal structure on most days,i.e.,SST has a significant semidiurnal cycle.Moreover,the semidiurnal cycle of SST is negatively correlated with the tidal data from March to August,but positively correlated with the tidal data from October to January.Little correlation is detected in the remaining months because of the weak coastal offshore SST gradients.The quality control and understanding of coastal SST data are particularly relevant with regard to the validation of indirect measurements such as satellite-derived data.