Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the ...Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures(20–200 ℃) in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments.Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep(n = 5) with the appropriate material parameters in the salt tectonic modeling.展开更多
The mined-out area of a gypsum mine is right un-derneath civil constructions of a township, threatening the safety of the latter. To evaluate the long-term stability of the mined-out area, a visco-elastic plastic fini...The mined-out area of a gypsum mine is right un-derneath civil constructions of a township, threatening the safety of the latter. To evaluate the long-term stability of the mined-out area, a visco-elastic plastic finite element analysis is carried out,combined with in situ measurements. The visco-elastic plastic coefficients have been determined through laboratory rock creep tests. Noticing the lim-itations of conventional element failure criteria,the authors proposed a new method to evaluate the stability of the element.i. e. ,by a si-multaneous control of the energy density and strain of the element. Computation showed that at stable state,one third of the pillars are in the visco-plastic state,the rest of the pillars ,the roof and floor are still in the visco-elastic state. The stress concentration coefficient at the boundary of pillars and roof is 2. 3,and the maximum verti-cal stress on the pillars is 11. 8 MPa. Data measured on site are con-sistent with the computation results, indicating that the proposed cal-culation method is correct. Therefore, the current mined-out area is stable,and the dimension of pillars is reasonable. The next-step ex-traction work should be carried out maintaining the current parame-ters,with only a moderate increase in pillar sizes to enhance the sta-bility of the pillars.展开更多
基金RWTH Aachen UniversityChina University of Petroleum for the support of the work+1 种基金funded by the startup project of China University of Petroleum, Beijing (No.2462014YJRC041)supported by Science Foundation of China University of Petroleum, Beijing (No. C201601)
文摘Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures(20–200 ℃) in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments.Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep(n = 5) with the appropriate material parameters in the salt tectonic modeling.
文摘The mined-out area of a gypsum mine is right un-derneath civil constructions of a township, threatening the safety of the latter. To evaluate the long-term stability of the mined-out area, a visco-elastic plastic finite element analysis is carried out,combined with in situ measurements. The visco-elastic plastic coefficients have been determined through laboratory rock creep tests. Noticing the lim-itations of conventional element failure criteria,the authors proposed a new method to evaluate the stability of the element.i. e. ,by a si-multaneous control of the energy density and strain of the element. Computation showed that at stable state,one third of the pillars are in the visco-plastic state,the rest of the pillars ,the roof and floor are still in the visco-elastic state. The stress concentration coefficient at the boundary of pillars and roof is 2. 3,and the maximum verti-cal stress on the pillars is 11. 8 MPa. Data measured on site are con-sistent with the computation results, indicating that the proposed cal-culation method is correct. Therefore, the current mined-out area is stable,and the dimension of pillars is reasonable. The next-step ex-traction work should be carried out maintaining the current parame-ters,with only a moderate increase in pillar sizes to enhance the sta-bility of the pillars.