This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function,...This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function, which is similar to the theoretical model suggested by Hoek. Factors affecting water pressures are water level in tension crack, dip angle of fault, the height of filling materials and thickness of fault zone in sequence.展开更多
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at vari...Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.展开更多
Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this st...Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this study,a series of model tests of weathered rock slope under different conditions were conducted.The matric suction,volumetric water content,earth pressure and deformation of slope were monitored in real time during rainfall.The response of the slope to rainfall infiltration,failure process and failure mode of slope under different conditions were analyzed,and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied.The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction.When the distribution of the matrix suction(or water content)of slope met the condition that the resistance to sliding of the slip-mass was overcome,the displacement increased sharply and landslide occurred.Three factors including rainfall process,lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall.It can be found from the test results under different conditions that compared with intermittent rainfall condition,the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall.The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite,which results in greater disaster risk.The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope.In addition,the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves,which can be used as reference for early warning of rainfall-induced weathered rock landslide.展开更多
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi...The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation.展开更多
In the area with high groundwater pressure,grout curtain is often adopted to reduce the water pressure on tunnel lining.A series of model tests for the diversion tunnel of the Jinping Second Cascade Hydropower Station...In the area with high groundwater pressure,grout curtain is often adopted to reduce the water pressure on tunnel lining.A series of model tests for the diversion tunnel of the Jinping Second Cascade Hydropower Station,China,is designed to study the effect of grout curtain.The impact of the thickness of grout curtain,permeability of grout curtain,internal water pressure and drainage inflow on the distribution of water pressure are discussed.The results indicates that under un-drained condition,water pressure is equal to hydrostatic one no matter grout curtain is selected or not,water pressure under drained condition is far less than that of un-drained condition,drainage in tunnel can reduce tunnel water pressure effectively.For same inflow,both increasing of thickness and decrease of hydraulic conductivity of grout curtain can reduce water pressure effectively.For the same water pressure,the smaller inflow of grout curtain,the less volume of water to be discharged.The impact of hydraulic conductivity of grout curtain is more obvious than that of thickness.With increasing of internal water pressure,the water pressure of grout curtain increases too,and the water pressure increases nearly linearly.The proposed thickness of grout curtain for the diversion tunnels is 16 m.展开更多
Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnel...Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels.A large-scale model test was designed and conducted,innovatively transforming the external water pressure of the lining construction joint into internal water pressure.The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed,and the reliability of the model test was verified via numerical calculations.The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints.The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop.In addition,the type of waterstop significantly influences the water pressure resistance of lining construction joints.The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop,and both have more advantages than the rubber waterstop.The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results,indicating that the model test results have high accuracy and reliability.This study provides a reference for similar projects and has wide applications.展开更多
Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tu...Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.展开更多
Partially submerged deposit slopes are o ften encountered in practical engineering applications.Howeve r,studies on evaluating their stability under seismic loading are still rare.In order to understand the seismic be...Partially submerged deposit slopes are o ften encountered in practical engineering applications.Howeve r,studies on evaluating their stability under seismic loading are still rare.In order to understand the seismic behavior of partially submerged deposit slopes,centrifuge shaking table model tests(50 g) were employed.The responses of horizontal accelerations,accumulated excess pore pressures,deformation mode,and failure mode of the partially submerged deposit slope model were analyzed.In dynamic centrifuge model tests,EQ5 shaking event was applied numerically.The results indicated that in the saturated zone of the deposit slope,liquefaction did not occur,and the measured horizontal accelerations near the water table were amplified as a layer-magnification effect.It was also shown that the liquefaction-resistance of the deposit slope increased under multiple sequential ground motions,and the deformation depth of the deposit slope induced by earthquake increased gradually with increasing dynamic Ioad amplitude.Except for the excessive crest settlement generated by strong shaking,an additional vertical permanent displacement was initiated at the slope crest due to the dissipation of excess pore pressure under seismic loading.The result of particle image velocimetry(PIV) analysis showed that an obvious internal arc-slip was generated around the water table of the partially submerged deposit slope under seismic loading.展开更多
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist...Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.展开更多
This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure w...This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.展开更多
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group...To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.展开更多
An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the tim...An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the time.This system is deployed over an artificial or natural underground cavern used for the storage of gas(or some other fluids) to prevent the gas from escaping through leakage paths in the rock mass.An experimental physical modeling system has been constructed to evaluate the performance of artificial water curtain systems under various conditions.These conditions include different spacings of caverns and cavern radii located below the natural groundwater level.The principles of the experiment,devices,design of the physical model,calculation of gas leakage,and evaluation of the critical gas pressure are presented in this paper.Experimental result shows that gas leakage is strongly affected by the spacing of water curtain boreholes,the critical gas pressure,and the number and proximity of storage caverns.The hydraulic connection between boreholes is observed to vary with depth or location,which suggests that the distribution of water-conducting joint sets along the boreholes is also variable.When designing the drainage system for a cavern,drainage holes should be orientated to maximize the frequency at which they encounter major joint sets and permeable intervals studying in order to maintain the seal on the cavern through water pressure.Our experimental results provide a significant contribution to the theoretical controls on water curtains,and they can be used to guide the design and construction of practical storage caverns.展开更多
We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagati...We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.展开更多
This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is comb...This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is combined with an efficient iterative algorithm to develop an analytical solution in which the quadratic pressure drop condition is imposed on the horizontal perforated plate.The analytical results are in good agreement with the results of an independently developed iterative boundary element method(BEM)solution.Experimental tests are carried out in a wave flume to measure the reflection coefficient and transmission coefficient of the horizontal perforated plate,and the analytical results agree reasonably well with the experimental data.The influence of various structural parameters of the horizontal perforated plate on the hydrodynamic parameters of reflection coefficient,transmission coefficient,energy-loss coefficient,and wave force are analyzed on the basis of the analytical solution.Useful results for the practical engineering application of horizontal perforated plates are also presented.展开更多
基金This paper is supported by the Research Fund for the Doctoral Program of Higher Education of China.
文摘This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function, which is similar to the theoretical model suggested by Hoek. Factors affecting water pressures are water level in tension crack, dip angle of fault, the height of filling materials and thickness of fault zone in sequence.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department,China(Grant No.16ZB0105)
文摘Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.
基金supported by the National Natural Science Foundation of China(Nos.52179110,51309025,41877280 and 41672320)Geological Survey project of China Geological Survey(Nos.DD20160257,DD20190263,121201009000150023,202007000000180506).
文摘Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this study,a series of model tests of weathered rock slope under different conditions were conducted.The matric suction,volumetric water content,earth pressure and deformation of slope were monitored in real time during rainfall.The response of the slope to rainfall infiltration,failure process and failure mode of slope under different conditions were analyzed,and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied.The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction.When the distribution of the matrix suction(or water content)of slope met the condition that the resistance to sliding of the slip-mass was overcome,the displacement increased sharply and landslide occurred.Three factors including rainfall process,lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall.It can be found from the test results under different conditions that compared with intermittent rainfall condition,the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall.The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite,which results in greater disaster risk.The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope.In addition,the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves,which can be used as reference for early warning of rainfall-induced weathered rock landslide.
基金supported by National Key R&D Program of China(2018YFC1508503)
文摘The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41072205 and 50579097)the Shanghai Natural Science Foundation of China(Grant No.10ZR1431500)
文摘In the area with high groundwater pressure,grout curtain is often adopted to reduce the water pressure on tunnel lining.A series of model tests for the diversion tunnel of the Jinping Second Cascade Hydropower Station,China,is designed to study the effect of grout curtain.The impact of the thickness of grout curtain,permeability of grout curtain,internal water pressure and drainage inflow on the distribution of water pressure are discussed.The results indicates that under un-drained condition,water pressure is equal to hydrostatic one no matter grout curtain is selected or not,water pressure under drained condition is far less than that of un-drained condition,drainage in tunnel can reduce tunnel water pressure effectively.For same inflow,both increasing of thickness and decrease of hydraulic conductivity of grout curtain can reduce water pressure effectively.For the same water pressure,the smaller inflow of grout curtain,the less volume of water to be discharged.The impact of hydraulic conductivity of grout curtain is more obvious than that of thickness.With increasing of internal water pressure,the water pressure of grout curtain increases too,and the water pressure increases nearly linearly.The proposed thickness of grout curtain for the diversion tunnels is 16 m.
基金the General Program of the National Natural Science Foundation of China(Grant No.51878037).
文摘Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels.A large-scale model test was designed and conducted,innovatively transforming the external water pressure of the lining construction joint into internal water pressure.The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed,and the reliability of the model test was verified via numerical calculations.The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints.The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop.In addition,the type of waterstop significantly influences the water pressure resistance of lining construction joints.The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop,and both have more advantages than the rubber waterstop.The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results,indicating that the model test results have high accuracy and reliability.This study provides a reference for similar projects and has wide applications.
文摘Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.
基金supported by the National Natural Science Foundation of China(Grant Nos.41702348 and 41372314)the Natural Science Foundation of Hubei Province,China(Grant No.2017CFB373)。
文摘Partially submerged deposit slopes are o ften encountered in practical engineering applications.Howeve r,studies on evaluating their stability under seismic loading are still rare.In order to understand the seismic behavior of partially submerged deposit slopes,centrifuge shaking table model tests(50 g) were employed.The responses of horizontal accelerations,accumulated excess pore pressures,deformation mode,and failure mode of the partially submerged deposit slope model were analyzed.In dynamic centrifuge model tests,EQ5 shaking event was applied numerically.The results indicated that in the saturated zone of the deposit slope,liquefaction did not occur,and the measured horizontal accelerations near the water table were amplified as a layer-magnification effect.It was also shown that the liquefaction-resistance of the deposit slope increased under multiple sequential ground motions,and the deformation depth of the deposit slope induced by earthquake increased gradually with increasing dynamic Ioad amplitude.Except for the excessive crest settlement generated by strong shaking,an additional vertical permanent displacement was initiated at the slope crest due to the dissipation of excess pore pressure under seismic loading.The result of particle image velocimetry(PIV) analysis showed that an obvious internal arc-slip was generated around the water table of the partially submerged deposit slope under seismic loading.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. 51322401, 51404262, 51579239, 51574223)Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology) of China (No. CDPM2014KF03)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580493, 2014M551700, 2013M531424)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)
文摘Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.
文摘This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.
基金the financial supports from the Key Research and Development Program of Guangxi(No.GUIKE AB22080061)the Guangxi Transportation Industry Key Science and Technology Projects(No.GXJT-2020-02-08)+2 种基金the National Natural Science Foundation of China(No.52268062)the Guangxi Key Project of Nature Science Foundation(No.2020GXNSFDA238024)。
文摘To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.
基金Supported by the National Natural Science Foundation of China (50779025,50539090)the Open Research Foundation of State Key Laboratory of Hydroscience and Engineering of Tsinghua University (200805331143)
文摘An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the time.This system is deployed over an artificial or natural underground cavern used for the storage of gas(or some other fluids) to prevent the gas from escaping through leakage paths in the rock mass.An experimental physical modeling system has been constructed to evaluate the performance of artificial water curtain systems under various conditions.These conditions include different spacings of caverns and cavern radii located below the natural groundwater level.The principles of the experiment,devices,design of the physical model,calculation of gas leakage,and evaluation of the critical gas pressure are presented in this paper.Experimental result shows that gas leakage is strongly affected by the spacing of water curtain boreholes,the critical gas pressure,and the number and proximity of storage caverns.The hydraulic connection between boreholes is observed to vary with depth or location,which suggests that the distribution of water-conducting joint sets along the boreholes is also variable.When designing the drainage system for a cavern,drainage holes should be orientated to maximize the frequency at which they encounter major joint sets and permeable intervals studying in order to maintain the seal on the cavern through water pressure.Our experimental results provide a significant contribution to the theoretical controls on water curtains,and they can be used to guide the design and construction of practical storage caverns.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.40772192 and 41072237)the State Key Laboratort of Geomechanics and Deep Underground Engineering(No.SKLGDUEK0903)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100095110015)
文摘We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.
基金supported by the National Natural Science Foundation of China(Nos.51725903 and 52001293)the Taishan Scholar Program of Shandong Province(No.ts20190915).
文摘This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is combined with an efficient iterative algorithm to develop an analytical solution in which the quadratic pressure drop condition is imposed on the horizontal perforated plate.The analytical results are in good agreement with the results of an independently developed iterative boundary element method(BEM)solution.Experimental tests are carried out in a wave flume to measure the reflection coefficient and transmission coefficient of the horizontal perforated plate,and the analytical results agree reasonably well with the experimental data.The influence of various structural parameters of the horizontal perforated plate on the hydrodynamic parameters of reflection coefficient,transmission coefficient,energy-loss coefficient,and wave force are analyzed on the basis of the analytical solution.Useful results for the practical engineering application of horizontal perforated plates are also presented.