A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect,and intermediate principal stress effect. The former two effects can be described by the meridian curves,...A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect,and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e.Mohr–Coulomb(MC), Hoek–Brown(HB), and Exponent(EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure Icorresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength.Meanwhile, three Lode angle dependence functions of L,L, and L, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria,especially the Exponent Willam-Warnke criterion(EPWW)criterion, give much lower misfits, which illustrates that the EP criterion and Lhave more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.展开更多
A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sand...A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.展开更多
The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal s...The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal stress still remains in the criterion's latest version. At the same time, several three-dimensional (3D) HB strength, which can takes into account the influence of the intermediate principal stress, have already been proposed, among which the 3D HB criterion proposed by Zhang and Zhu seems to be the most reasonable one. However, the Zhang 3D HB criterion may have problems with some stress path close to triaxial extension state because of the non-convexity characteristic of its failure surface. In this paper, a new 3D HB strength criterion is presented based on a generalized form of the HB criterion, which also considers the effect of the intermediate principal stress and inherits all the merits of the original version of the HB criterion. In addition, this new criterion can remedy to some extent the shortcomings observed in the Zhang 3D HB criterion. Polyaxial tests for five different rocks from pub- lished literatures are used for evaluating this new criterion and comparing it with the Zhang 3D HB criterion. The re- sults show that this new criterion may over-predict or under- predict the polyaxial strength of rocks but the errors are rela- tively small, and similar results are also found for the Zhang 3D HB criterion, which one is better depends on the type of the rock under estimation.展开更多
One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insu...One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength.展开更多
Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geom...Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented.展开更多
The strengths of 12 rocks cited from literatures increase in a nonlinear way with increasing confining pressure against the Coulomb criterion. The criteria with power forms like the generalized Hoek-Brown criterion ar...The strengths of 12 rocks cited from literatures increase in a nonlinear way with increasing confining pressure against the Coulomb criterion. The criteria with power forms like the generalized Hoek-Brown criterion are not available for describing the strength properties in the whole test range for Indiana limestone, Yamaguchi marble and Vosges sandstone, of which the differential stresses are approximately constant at high confining pressures. The exponential criterion with three parameters fits the test data of those 12 rocks well with a low misfit. The three parameters are independent of the uniaxial compressive strength (UCS), the initial increasing rate of strength with confining pressure, and the limitation of differential stress.展开更多
This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane,Australia,particularly as they are constructed within deep horizons where ...This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane,Australia,particularly as they are constructed within deep horizons where the in situ stress magnitudes is larger.Rock mass failure mechanisms for the current tunnels in Brisbane are generally discontinuity controlled and the potential for stress-induced failure is relatively rare.For the road tunnels which have been constructed in Brisbane over the last 12 years,the strength of the more massive rock masses for continuum analysis has been estimated by the application of the Hoek-Brown(H-B)failure criterion using the geological strength index(GSI)to determine the H-B parameters mb,s and a.Over the last few years,alternative approaches to estimating rock mass strength for‘massive to moderately jointed hard rock masses’have been proposed by others,which are built on the work completed by E.Hoek and E.T.Brown in this area over their joint careers.This paper explores one of these alternative approaches to estimating rock mass strength for one of the geological units(the Brisbane Tuff),which is often encountered in tunnelling projects in Brisbane.The potential implications of these strength forecasts for future tunnelling projects are discussed along with the additional work which will need to be undertaken to confirm the applicability of such alternative strength criteria for this rock mass.展开更多
基金supported by the National Natural Science Foundation of China (Grants 51204168, 51579239)the China Postdoctoral Science Foundation funded project (Grants 2013M531424, 2015M580493)+1 种基金the National Basic Research 973 Program of China (Grants 2013CB036003, 2014CB046306)the Fundamental Research Funds for the Central Universities (Grant 2012QNB23)
文摘A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect,and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e.Mohr–Coulomb(MC), Hoek–Brown(HB), and Exponent(EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure Icorresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength.Meanwhile, three Lode angle dependence functions of L,L, and L, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria,especially the Exponent Willam-Warnke criterion(EPWW)criterion, give much lower misfits, which illustrates that the EP criterion and Lhave more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.
文摘A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.
基金supported by Western Transportation Technology Funds of China (200731800038)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University(CHD2011JC175)
文摘The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal stress still remains in the criterion's latest version. At the same time, several three-dimensional (3D) HB strength, which can takes into account the influence of the intermediate principal stress, have already been proposed, among which the 3D HB criterion proposed by Zhang and Zhu seems to be the most reasonable one. However, the Zhang 3D HB criterion may have problems with some stress path close to triaxial extension state because of the non-convexity characteristic of its failure surface. In this paper, a new 3D HB strength criterion is presented based on a generalized form of the HB criterion, which also considers the effect of the intermediate principal stress and inherits all the merits of the original version of the HB criterion. In addition, this new criterion can remedy to some extent the shortcomings observed in the Zhang 3D HB criterion. Polyaxial tests for five different rocks from pub- lished literatures are used for evaluating this new criterion and comparing it with the Zhang 3D HB criterion. The re- sults show that this new criterion may over-predict or under- predict the polyaxial strength of rocks but the errors are rela- tively small, and similar results are also found for the Zhang 3D HB criterion, which one is better depends on the type of the rock under estimation.
基金supported by the Large Open PitⅡProject through contract No.019799 with the Geotechnical Research Centre of The University of Queensland and by SRK Consulting South Africa
文摘One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength.
文摘Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented.
基金Supported by the National Natural Science Foundation of China (10572047)
文摘The strengths of 12 rocks cited from literatures increase in a nonlinear way with increasing confining pressure against the Coulomb criterion. The criteria with power forms like the generalized Hoek-Brown criterion are not available for describing the strength properties in the whole test range for Indiana limestone, Yamaguchi marble and Vosges sandstone, of which the differential stresses are approximately constant at high confining pressures. The exponential criterion with three parameters fits the test data of those 12 rocks well with a low misfit. The three parameters are independent of the uniaxial compressive strength (UCS), the initial increasing rate of strength with confining pressure, and the limitation of differential stress.
文摘This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane,Australia,particularly as they are constructed within deep horizons where the in situ stress magnitudes is larger.Rock mass failure mechanisms for the current tunnels in Brisbane are generally discontinuity controlled and the potential for stress-induced failure is relatively rare.For the road tunnels which have been constructed in Brisbane over the last 12 years,the strength of the more massive rock masses for continuum analysis has been estimated by the application of the Hoek-Brown(H-B)failure criterion using the geological strength index(GSI)to determine the H-B parameters mb,s and a.Over the last few years,alternative approaches to estimating rock mass strength for‘massive to moderately jointed hard rock masses’have been proposed by others,which are built on the work completed by E.Hoek and E.T.Brown in this area over their joint careers.This paper explores one of these alternative approaches to estimating rock mass strength for one of the geological units(the Brisbane Tuff),which is often encountered in tunnelling projects in Brisbane.The potential implications of these strength forecasts for future tunnelling projects are discussed along with the additional work which will need to be undertaken to confirm the applicability of such alternative strength criteria for this rock mass.