期刊文献+
共找到13,645篇文章
< 1 2 250 >
每页显示 20 50 100
Electronic structure and effective mass of pristine and Cl-doped CsPbBr_(3)
1
作者 魏志远 魏愉昊 +7 位作者 徐申东 彭舒婷 Makoto Hashimoto 路东辉 潘旭 匡泯泉 肖正国 何俊峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期167-171,共5页
Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properti... Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properties of materials.But as for now,limited studies have been done to reveal the underlying electronic structure of this material system,comparing to the huge amount of investigations on the material synthesis.The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena.In pristine CsPbBr_(3),the Fr?hlich polarons associated with the Pb–Br stretching modes are proposed to be responsible for the effective mass renormalization.In this regard,it would be very interesting to explore the electronic structure in doped LHPs.Here,we report high-resolution angle-resolved photoemission spectroscopy(ARPES) studies on both pristine and Cl-doped CsPbBr_(3).The experimental band dispersions are extracted from ARPES spectra along both ■ and ■ high symmetry directions.DFT calculations are performed and directly compared with the ARPES data.Our results have revealed the band structure of Cl-doped CsPbBr_(3) for the first time,which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr_(3) compound.Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength.These results will help understand the physical properties of LHPs as a function of doping. 展开更多
关键词 lead halide perovskites electronic structure effective mass
下载PDF
A novel multi-channel porous structure facilitating mass transport towards highly efficient alkaline water electrolysis
2
作者 Xinge Jiang Vasileios Kyriakou +6 位作者 Chen Song Xianbin Wang Sophie Costil Chunming Deng Taikai Liu Tao Jiang Hanlin Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期511-518,I0013,共9页
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w... An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications. 展开更多
关键词 Alkaline water electrolysis mass transport Bubble dynamics Innovative convection mode Multi-channel porous structure
下载PDF
Effect of high-multiple water injection on rock pore structure and oil displacement efficiency
3
作者 Xiao Lei Chunpeng Zhao +2 位作者 Qiaoliang Zhang Panrong Wang Runfu Xiong 《Energy Geoscience》 EI 2024年第1期234-238,共5页
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por... Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection. 展开更多
关键词 High multiple Water injection rock permeability Pore structure Oil displacement efficiency
下载PDF
Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass 被引量:1
4
作者 Jiawei Liang Defu Tong +3 位作者 Fei Tan Xiongwei Yi Junpeng Zou Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1977-1992,共16页
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura... As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses. 展开更多
关键词 Heat conduction Fractured rock mass Crack propagation Galerkin variation Numerical manifold method(NMM)
下载PDF
Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression 被引量:5
5
作者 Hongjian Lu Yiren Wang +2 位作者 Deqing Gan Jie Wu Xiaojun Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期802-812,共11页
To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ... To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS. 展开更多
关键词 backfill–rock composite structure triaxial compression mechanical behavior acoustic emission numerical simulation
下载PDF
Inverting the rock mass P-wave velocity field ahead of deep buried tunnel face while borehole drilling
6
作者 Liu Liu Shaojun Li +5 位作者 Minzong Zheng Dong Wang Minghao Chen Junbo Zhou Tingzhou Yan Zhenming Shi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期681-697,共17页
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect... Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging. 展开更多
关键词 Deep buried tunnel Wave velocity field Borehole drilling Tomography rock mass
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network
7
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Effect of eccentric and inclined loading on the bearing capacity of strip footing placed on rock mass
8
作者 Shuvankar DAS Debarghya CHAKRABORTY 《Journal of Mountain Science》 SCIE CSCD 2024年第1期292-312,共21页
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri... This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas. 展开更多
关键词 Eccentric and inclined Power cone programming rock mass Limit analysis Artificial neural network
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
9
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
A Simplified Method for the Stress Analysis of Underground Transfer Structures Crossing Multiple Subway Tunnels
10
作者 Shen Yan Dajiang Geng +2 位作者 Ning Dai Mingjian Long Zhicheng Bai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2893-2915,共23页
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str... According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment. 展开更多
关键词 Crossing tunnels transfer structure force mechanism simplify analysis layered soil mass
下载PDF
Deformation characteristics and damage ontologies of soft and hard composite rock masses under impact loading
11
作者 LI Jinhua ZHANG Tianyu +3 位作者 WU Baolin SU Peili YANG Yang WANG Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1715-1727,共13页
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ... As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load. 展开更多
关键词 Soft and hard composite rock mass Dynamic properties Split Hopkinson pressure bar(SHPB) Numerical simulation Intrinsic damage model
下载PDF
Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques
12
作者 Alberto Fernández JoséA.Sanchidrián +3 位作者 Pablo Segarra Santiago Gómez Enming Li Rafael Navarro 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期555-571,共17页
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for... A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations. 展开更多
关键词 Drill monitoring technology rock mass characterization Underground mining Similarity metrics of binary vectors structural rock factor Machine learning
下载PDF
Dynamic damage evolution of bank slopes with serrated structural planes considering the deteriorated rock mass and frequent reservoirinduced earthquakes
13
作者 Xinrong Liu Yan Wang +3 位作者 Bin Xu Xiaohan Zhou Xueyan Guo Luli Miao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1131-1145,共15页
To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under ... To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing. 展开更多
关键词 rock bedded slope Serrated structural planes Reservoir-induced earthquakes Hydro-fluctuation belt Damage evolution
下载PDF
H Control for Externally Excited Building Structures with Active Mass Damper under Actuator Saturation
14
作者 Shulong Wei Yuanguang Zheng 《Open Journal of Applied Sciences》 2023年第11期1951-1966,共16页
This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<s... This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications. 展开更多
关键词 structural Vibration Active mass Damper H Control Controller Saturation Linear Matrix Inequality
下载PDF
Estimation of Fracture Geometry Parameters and Characterization of Rock Mass Structure for the Beishan Area,China 被引量:1
15
作者 WEI Xiang GUO Ying +4 位作者 CHENG Hanlie WEI Jianfei ZHANG Linlin HUO Liang HOU Zhenkun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1381-1392,共12页
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,... The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal. 展开更多
关键词 fracture geometry parameters rock mass structure high-level radioactive waste disposal RMSR Beishan area
下载PDF
Physical Modeling of Influence of Rock Mass Structure on Roof Stability
16
作者 孟召平 彭苏萍 +1 位作者 尹尚先 王磊 《International Journal of Mining Science and Technology》 SCIE EI 2000年第2期67-71,共5页
Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failur... Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failure and underground pressure induced by coal mining in coal roof with different rock mass structures are analyzed. The test results indicate that the distances of first and periodic weighting of main roof and the height of caving and fracture zone decrease with the increment of fractures in roof rock mass. From whole to blocky and heavily fractured structures, abutment pressure ahead of working face reduces and the peak value of abutment pressure migrates to inside of roof rock mass. 展开更多
关键词 rock mass structure ROOF STABILITY similar simulation test
下载PDF
The Inner Structure of the Intrinsic Electron and the Origin of Self-Mass
17
作者 Victor Vaguine 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期174-189,共16页
A brief review and analysis of two historical models of the electron, the charged spinning sphere and Goudsmit and Uhlenbeck’s concept, is presented. It is shown that the enormous potential of classical electrodynami... A brief review and analysis of two historical models of the electron, the charged spinning sphere and Goudsmit and Uhlenbeck’s concept, is presented. It is shown that the enormous potential of classical electrodynamics has been underutilized in particle physics. Such observation leads to discovery of a principal component in the electron inner structure—the charged c-ring. The intrinsic (fundamental) electron model based on the charged c-ring successfully explains the ontology of the charge fractionation in quantum chromodynamics and the formation of Cooper pairs in superconductivity. The c-ring properties are explained on the basis of the General Compton Conditions as defined. Properties of the charged c-ring include the explanation of the boundary conditions, electro-magnetostatic field configuration, self-mass, spin, magnetic moment, and the gyromagnetic ratio. The self-mass of the intrinsic electron is 100% electro-magnetostatic and it is shown how to compute its value. The classical-quantum divide no longer exists. Relation between the intrinsic electron and the electron is fundamentally defined. The electron is the composite fermion consisting of the intrinsic electron and the neutrino. The ontology of the anomaly in the electron magnetic moment is demonstrated—it is due to the addition of the neutrino magnetic moment to the overall electron magnetic moment. The intrinsic electron replaces the W? boson in particle physics, resulting in a fundamental implication for the Standard Model. 展开更多
关键词 Intrinsic Electron Inner structure Electro-Magnetostatic Self-mass General Compton Conditions Charged C-Ring Visualization C-Ring Length Constant
下载PDF
Suggestions, Methods and Examples of Monitoring of Rock Structures and Excavation of Rock Mass
18
作者 Evandro Moraes da Gama 《Geomaterials》 2020年第4期91-104,共14页
Rock mechanics projects, excavations and rock mass monitoring are day-by-day concerns of professionals and scientists of rock engineer. Technological advances observed in the 20 and 21 centuries provided high precisio... Rock mechanics projects, excavations and rock mass monitoring are day-by-day concerns of professionals and scientists of rock engineer. Technological advances observed in the 20 and 21 centuries provided high precision equipment capable of establishing deformation and estimating the rock mass stress remotely and in real time. In addition, in order to confirm and study the data obtained with theses equipment, numerical programs of modeling became more accessible to schools, research centers and private companies. Monitoring an excavation requires, besides understanding fully the rock structure, precise definitions and goals: why, how, where. This article discusses concepts of monitoring, modeling and calibration, as well as presents examples of applications where these questions were successfully answered. 展开更多
关键词 MONITORING Monitored Excavations Calibrated Model rock structure rock mass
下载PDF
The Intrinsic Electron with Its Properties Such as Inner Structure and Self-Mass Is in Conflict with Quantum Field Theory
19
作者 Victor Vaguine 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期583-595,共13页
The quantum field theory (QFT) is one of branches of the Standard Model. According to QFT, quantum fields are the primary entities and particles are the excitations of these fields, coming in discrete lumps with no in... The quantum field theory (QFT) is one of branches of the Standard Model. According to QFT, quantum fields are the primary entities and particles are the excitations of these fields, coming in discrete lumps with no inner structures and with properties assigned by declaration. Such view is in conflict with the observed vacuum energy density, 140 orders of magnitudes less than required by the QFT. In addition, such view is challenged by Aphysical Quantum Mechanics (AQM), a deeper quantum theory. According to AQM, the fundamental understanding of quantum reality is expanded by the addition of two fundamental categories, aphysical and elementary consciousness of elementary particles. Based on AQM and as an example, the total ontology of the intrinsic (fundamental) electron is presented with its inner structure of perfect geometry consisting of the physical charged c-ring and aphysical cylinder, and with its properties such as self-mass, spin, magneto-electrostatic field configuration and magnetic moment. The position parameter in the inner structure demonstrates that there are no two identical intrinsic electrons in the Universe thus placing a question mark over the QFT principle of indistinguishability. 展开更多
关键词 Quantum Reality Physical-Aphysical Intrinsic Electron Charged C-Ring Aphysical Cylinder Elementary Consciousness Position Parameter Constant U Ontology Self-mass Indistinguishable Inner structure
下载PDF
Application and prospects of 3D printing in physical experiments of rock mass mechanics and engineering:materials,methodologies and models 被引量:2
20
作者 Qingjia Niu Lishuai Jiang +3 位作者 Chunang Li Yang Zhao Qingbiao Wang Anying Yuan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期1-17,共17页
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro... The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed. 展开更多
关键词 3D printing rock mass mechanics Prefabricated cracks rock-like material Fractured rock mass
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部