Piles socketed in soft rock were traditionally regarded as end bearing piles, and the loads transferred from superstructure were assumed in design to be shouldered totally by the piles. This paper was designated to ...Piles socketed in soft rock were traditionally regarded as end bearing piles, and the loads transferred from superstructure were assumed in design to be shouldered totally by the piles. This paper was designated to deal with the interaction between the piles socketed in weak rock and surrounding soil through field measurement. The pile head reaction and ground pressure under piled raft foundation were monitored, respectively. The analysis of the data measured in situ shows the characteristics of the pile embedded in weak rock are similar to that of friction pile to some extent. The rock socketed pile, together with the surrounding soil, shoulders the weight of the superstructure. It is suggested that soil bearing should be considered in designing the soft rock socketed piles, which can make the design more economical.展开更多
Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedan...Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedance function transfer method. Firstly, the sediment under rock-socketed pile was assumed to be fictitious soil pile with the same sectional area. The Rayleigh-Love rode model was used to simulate the rock-socketed pile and the fictitious soil pile with the consideration of the lateral inertial effect of large-diameter pile. The layered surrounding soils and bedrock were modeled by the plane strain model. Then, by virtue of the initial conditions and boundary conditions of the soil pile system, the analytical solution of the vertical dynamic impedance at the head of rock-socketed pile was derived for the arbitrary excitation acting on the pile head. Lastly, based on the presented analytical solution, the effect of sediment properties, bedrock property and lateral inertial effect on the vertical dynamic impedance at rock-socketed pile head were investigated in detail. It is shown that the sediment properties have significant effect on the vertical dynamic impedance at the rock-socketed pile head. The ability of soil-pile system to resist dynamic vertical deformation is weakened with the increase of sediment thickness, but amplified with the increase of shear wave velocity of sediment. The ability of soil pile system to resist dynamic vertical deformation is amplified with the bedrock property improving, but the ability of soil-pile system to resist vertical vibration is weakened with the improvement of bedrock property.展开更多
A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data s...A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength(UCS)(0.15 MPa 〈 σ_(rc) 〈156 MPa) and various rock types. Rock mass cuttability index(RMCI) is correlated with shaft resistance(r_s) to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus r_s equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami(2017). Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations.展开更多
Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In t...Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In the optimum design of semi-deep foundations, prediction of the shaft bearing capacity, rs, of foundations socketed in rocks is thus critically important. In this study, the unconfined compressive strength(UCS), qu, has been applied in order to investigate the shaft bearing capacity. For this, a database of 106 full-scale load tests is compiled with UCS values of surrounding rocks, in which 34 tests with rock quality designation(RQD), and 5 tests with rock mass rating(RMR). The bearing rocks for semi-deep foundations include limestone, mudstone, siltstone, shale, granite, tuff, granodiorite, claystone, sandstone, phyllite, schist, and greywacke. Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS based on the types of rocks. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data. Since rock-socketed shafts are supported by rock mass(not intact rock), a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, qu(modified), based upon RMR and RQD in order to take into account the effect of the rock mass properties.展开更多
Based on the characteristic that the potential sliding surfaces of rock slope are commonly in the shape of either line or fold line,analysis thought of conventional pile foundation in the flat ground under complex loa...Based on the characteristic that the potential sliding surfaces of rock slope are commonly in the shape of either line or fold line,analysis thought of conventional pile foundation in the flat ground under complex load condition was applied and the upper-bound theorem of limit analysis was used to compute thrust of rock layers with all possible distribution shapes. The interaction of slope and pile was considered design load in terms of slope thrust,and the finite difference method was derived to calculate inner-force and displacement of bridge pile foundation in rock slope under complex load condition. The result of example shows that the distribution model of slope thrust has certain impact on displacement and inner-force of bridge pile foundation. The maximum displacement growth rate reaches 54% and the maximum moment and shear growth rates reach only 15% and 20%,respectively,but the trends of inner-force and displacement of bridge pile foundation are basically the same as those of the conventional pile foundation in the flat ground. When the piles bear the same level lateral thrust,the distribution shapes of slope thrust have different influence on inner-force of pile foundation,especially the rectangle distribution,and the triangle thrust has the smallest displacement and inner-force of pile foundation.展开更多
Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy require...Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.展开更多
This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influenc...This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influence of rock characteristics on bearing capacity are discussed. Proposes are presented with respect to issues related to the construction and design of uplift piles.展开更多
The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to est...The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.展开更多
This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and p...This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and pressure measurements between pile tip and soft rock. The relative in situ test problems are discussed. Based on the limit equilibrium theory and the load transfer equation, a synthesis method of analyzing the ultimate carrying capacity of single large diameter pile is put forward. The research results show that the key to determining the ultimate carrying capacity of single pile with a large diameter is the analysis of the intensity of soft rock.展开更多
文摘Piles socketed in soft rock were traditionally regarded as end bearing piles, and the loads transferred from superstructure were assumed in design to be shouldered totally by the piles. This paper was designated to deal with the interaction between the piles socketed in weak rock and surrounding soil through field measurement. The pile head reaction and ground pressure under piled raft foundation were monitored, respectively. The analysis of the data measured in situ shows the characteristics of the pile embedded in weak rock are similar to that of friction pile to some extent. The rock socketed pile, together with the surrounding soil, shoulders the weight of the superstructure. It is suggested that soil bearing should be considered in designing the soft rock socketed piles, which can make the design more economical.
基金Projects(51109084/E09070151308234/E08061) supported by the National Natural Science Foundation of China+1 种基金Project(2013J05079) supported by the Natural Science Foundation of Fujian Province,ChinaProject(Z012002) supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Institute of Rock and Soil Mechanics,Chinese Academy of Sciences),China
文摘Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedance function transfer method. Firstly, the sediment under rock-socketed pile was assumed to be fictitious soil pile with the same sectional area. The Rayleigh-Love rode model was used to simulate the rock-socketed pile and the fictitious soil pile with the consideration of the lateral inertial effect of large-diameter pile. The layered surrounding soils and bedrock were modeled by the plane strain model. Then, by virtue of the initial conditions and boundary conditions of the soil pile system, the analytical solution of the vertical dynamic impedance at the head of rock-socketed pile was derived for the arbitrary excitation acting on the pile head. Lastly, based on the presented analytical solution, the effect of sediment properties, bedrock property and lateral inertial effect on the vertical dynamic impedance at rock-socketed pile head were investigated in detail. It is shown that the sediment properties have significant effect on the vertical dynamic impedance at the rock-socketed pile head. The ability of soil-pile system to resist dynamic vertical deformation is weakened with the increase of sediment thickness, but amplified with the increase of shear wave velocity of sediment. The ability of soil pile system to resist dynamic vertical deformation is amplified with the bedrock property improving, but the ability of soil-pile system to resist vertical vibration is weakened with the improvement of bedrock property.
基金support of Yapi Merkezi Construction and Industry Inc.,Istanbul,Turkey
文摘A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength(UCS)(0.15 MPa 〈 σ_(rc) 〈156 MPa) and various rock types. Rock mass cuttability index(RMCI) is correlated with shaft resistance(r_s) to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus r_s equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami(2017). Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations.
文摘Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In the optimum design of semi-deep foundations, prediction of the shaft bearing capacity, rs, of foundations socketed in rocks is thus critically important. In this study, the unconfined compressive strength(UCS), qu, has been applied in order to investigate the shaft bearing capacity. For this, a database of 106 full-scale load tests is compiled with UCS values of surrounding rocks, in which 34 tests with rock quality designation(RQD), and 5 tests with rock mass rating(RMR). The bearing rocks for semi-deep foundations include limestone, mudstone, siltstone, shale, granite, tuff, granodiorite, claystone, sandstone, phyllite, schist, and greywacke. Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS based on the types of rocks. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data. Since rock-socketed shafts are supported by rock mass(not intact rock), a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, qu(modified), based upon RMR and RQD in order to take into account the effect of the rock mass properties.
基金Project(50578060) supported by the National Natural Science Foundation of China
文摘Based on the characteristic that the potential sliding surfaces of rock slope are commonly in the shape of either line or fold line,analysis thought of conventional pile foundation in the flat ground under complex load condition was applied and the upper-bound theorem of limit analysis was used to compute thrust of rock layers with all possible distribution shapes. The interaction of slope and pile was considered design load in terms of slope thrust,and the finite difference method was derived to calculate inner-force and displacement of bridge pile foundation in rock slope under complex load condition. The result of example shows that the distribution model of slope thrust has certain impact on displacement and inner-force of bridge pile foundation. The maximum displacement growth rate reaches 54% and the maximum moment and shear growth rates reach only 15% and 20%,respectively,but the trends of inner-force and displacement of bridge pile foundation are basically the same as those of the conventional pile foundation in the flat ground. When the piles bear the same level lateral thrust,the distribution shapes of slope thrust have different influence on inner-force of pile foundation,especially the rectangle distribution,and the triangle thrust has the smallest displacement and inner-force of pile foundation.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008092,U1934205,51908123the China Postdoctoral Science Foundation under Grant No.2021M690034+1 种基金the International Postdoctoral Exchange Fellowship Program of Chinathe Zhishan Postdoctoral Fellowship Program。
文摘Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.
文摘This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influence of rock characteristics on bearing capacity are discussed. Proposes are presented with respect to issues related to the construction and design of uplift piles.
基金supported by the National Natural Science Foundation of China (Grant No. 41002112)Key teaching construction projects of Wuhan Institution of Technology (J201403)+2 种基金the Chinese Postdoctoral Science Foundation (Grant No. 2017M621783, 2018T110527)the International Postdoctoral Exchange Fellowship Program by China Postdoctoral Council (Year 2017)the Startup Foundation for Introducing Talent of NUIST (Grant No. 2017r045)
文摘The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.
文摘This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and pressure measurements between pile tip and soft rock. The relative in situ test problems are discussed. Based on the limit equilibrium theory and the load transfer equation, a synthesis method of analyzing the ultimate carrying capacity of single large diameter pile is put forward. The research results show that the key to determining the ultimate carrying capacity of single pile with a large diameter is the analysis of the intensity of soft rock.