期刊文献+
共找到435,131篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on motion and mechanical characteristics of the vertical wheel in the rock-breaking process 被引量:2
1
作者 Yan Yang Ying-Xin Yang +3 位作者 Hai-Tao Ren Qing-Liang Qi Ze-Quan Huang Chun-Xiao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期495-506,共12页
Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which ... Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits. 展开更多
关键词 Difficult to drill formation Vertical wheel Vertical wheel PDC bit rock-breaking mechanism Pre-damage
下载PDF
Effect of low-speed waterjet pressure on the rock-breaking performance of unsubmerged cavitating abrasive waterjet
2
作者 Chen-Xing Fan Deng Li +1 位作者 Yong Kang Hai-Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2638-2649,共12页
Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation gen... Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm. 展开更多
关键词 rock-breaking Coaxial low-speed waterjet pressure Abrasive waterjet CAVITATION Unsubmerged environment
下载PDF
Dendritic spine degeneration:a primary mechanism in the aging process
3
作者 Gonzalo Flores Leonardo Aguilar-Hernández +3 位作者 Fernado García-Dolores Humberto Nicolini Andrea Judith Vázquez-Hernández Hiram Tendilla-Beltrán 《Neural Regeneration Research》 SCIE CAS 2025年第6期1696-1698,共3页
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w... Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023). 展开更多
关键词 AGING process STRESS
下载PDF
基于Arduino与Processing的心率检测计设计研究 被引量:1
4
作者 臧红波 华拓 管志岳 《家电维修》 2024年第3期74-76,共3页
随着社会经济的高速发展,人们的物质生活也有了极大的提高,但同时也伴随着各种疾病的到来,身体健康已经成为人们普遍关注的焦点,因此,心率检测仪、血压计、血糖仪等各种家用医疗监测仪器已经逐渐融入日常生活。心脏病是人们难以预防的... 随着社会经济的高速发展,人们的物质生活也有了极大的提高,但同时也伴随着各种疾病的到来,身体健康已经成为人们普遍关注的焦点,因此,心率检测仪、血压计、血糖仪等各种家用医疗监测仪器已经逐渐融入日常生活。心脏病是人们难以预防的突发致命疾病之一,本文介绍的是一款基于Arduino【是基于易用硬件和软件的原型开源平台,包由可编程的电路板(简称微控制器),以及集成开发环境(称为Arduino IDE)的现成软件组成】Processing(开源编程语言,包括编辑器、编译器、展示器)的简易心率检测计系统,其功能实用、操作简单,可以测量心率,当超出正常心率范围时及时预警,是一款便携的实时心率测试仪。 展开更多
关键词 Arduino processing 心率检测计 设计研究
下载PDF
Flow structure and rock-breaking feature of the self-rotating nozzle for radial jet drilling 被引量:3
5
作者 Hua-Lin Liao Xia Jia +3 位作者 Ji-Lei Niu Yu-Cai Shi Hong-Chen Gu Jun-Fu Xu 《Petroleum Science》 SCIE CAS CSCD 2020年第1期211-221,共11页
For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking feat... For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry. 展开更多
关键词 Self-rotating NOZZLE Flow field characteristic Numerical simulation rock-breaking
下载PDF
Composite rock-breaking of high-pressure CO_(2)jet&polycrystallinediamond-compact(PDC)cutter using a coupled SPH/FEM model 被引量:3
6
作者 Can Cai Pei Zhang +2 位作者 Daping Xu Xianpeng Yang Yingfang Zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1115-1124,共10页
CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the cou... CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design. 展开更多
关键词 C0_(2)drilling High-pressure C0_(2)jet&PDC cutter Composite rock-breaking Experimental study SPH/FEM method
下载PDF
Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking 被引量:1
7
作者 LI Mukun WANG Gang +3 位作者 CHENG Weimin PU Shijie NI Hongjian SHI Xian 《Petroleum Exploration and Development》 CSCD 2021年第6期1450-1461,共12页
Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and ver... Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and verified to be effective,and the variations of jet flow field and rock stress with jet standoff distance of SC-CO_(2),water and nitrogen were studied.With the increase of jet standoff distance,the jet pressure of SC-CO_(2) decreases and the jet temperature difference increases.The SC-CO_(2) jet is higher in pressure than the nitrogen jet and differs little from the water jet.Temperature difference of SC-CO_(2) jet is 5 times that of water jet and more than 2.5 ti mes that of nitrogen jet when the jet standoff distance is larger than 10.The tem-perature stress is the main reason why SC-CO_(2) jet is superior to water and nitrogen jets in rock-breaking.The rock under the SC-CO_(2) jet has greater rock stress,effective rock-breaking jet standoff distance and rock-breaking area.The jet pressure plays a major role in rock-breaking when the jet standoff distance is small,while the jet temperature difference plays a major role in rock-breaking when the jet standoff distance is large.The SC-CO_(2) jet is an efficient volume rock-breaking method,which results in tensile and shear failure on the rock surface under short time jet and large area tensile failure inside the rock simultaneously under long time jet. 展开更多
关键词 supercritical carbon dioxide rock-breaking with jet rock stress jet pr essure jet temperature difference tem-perature stress heat-fluid-solid coupling
下载PDF
Numerical simulation of rock-breaking and influence laws of dynamic load parameters during axial-torsional coupled impact drilling with a single PDC cutter
8
作者 Yan Xi Hao-Yu Wang +3 位作者 Chun-Qing Zha Jun Li Gong-Hui Liu Bo-Yun Guo 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1806-1827,共22页
Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative resea... Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool. 展开更多
关键词 Axial-torsional coupled impact drilling tool rock-breaking PDC cutter RHT model
下载PDF
Constraints on Characteristics and Distribution of Gas Hydrate and Free Gas Using Broad-Band Processing of Three-Dimensional Seismic Data 被引量:2
9
作者 WANG Xiujuan ZHOU Jilin +7 位作者 LI Sanzhong LI Lixia LI Jie LI Yuanping WANG Linfei SU Pibo JIN Jiapeng GONG Zhi 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1233-1247,共15页
Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ... Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin. 展开更多
关键词 gas hydrate free gas shift of BSR broad-band processing
下载PDF
Design and optimization of a greener sinomenine hydrochloride preparation process considering variations among different batches of the medicinal herb 被引量:1
10
作者 Dandan Ren Jiale Xie +2 位作者 Tianle Chen Haibin Qu Xingchu Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期77-90,共14页
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ... The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry. 展开更多
关键词 Sinomenine hydrochloride process optimization ANISOLE
下载PDF
Investigation on taste characteristics and sensory perception of soft-boiled chicken during oral processing based on electronic tongue and electronic nose 被引量:1
11
作者 Na Xu Xianming Zeng +3 位作者 Peng Wang Xing Chen Xinglian Xu Minyi Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期313-326,共14页
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual... The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people. 展开更多
关键词 Oral processing CHICKEN Electronic tongue Electronic nose
下载PDF
Toluene Processed All-Polymer Solar Cells with 18%Efficiency and Enhanced Stability Enabled by Solid Additive:Comparison Between Sequential-Processing and Blend-Casting 被引量:1
12
作者 Guoping Zhang Chaoyue Zhao +13 位作者 Liangxiang Zhu Lihong Wang Wenzhao Xiong Huawei Hu Qing Bai Yaping Wang Chen Xie Peng You He Yan Dan Wu Tao Yang Mingxia Qiu Shunpu Li Guangye Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期247-254,共8页
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop... The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated. 展开更多
关键词 all-polymers solar cells sequential processing solid additive
下载PDF
Study on the coupling calculation method for the launch dynamics of a self-propelled artillery multibody system considering engraving process 被引量:1
13
作者 Shujun Zhang Xiaoting Rui +1 位作者 Hailong Yu Xiaoli Dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期67-85,共19页
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff... The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery. 展开更多
关键词 Self-propelled artillery Engraving process Multibody system dynamics Launch dynamics
下载PDF
Effects of friction stir processing and nano-hydroxyapatite on the microstructure,hardness,degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications 被引量:1
14
作者 Bo Wu Farazila Yusof +5 位作者 Fuguo Li Huan Miao A.R.Bushroa Mohd Ridha Bin Muhamad Irfan Anjum Badruddin Mahmoud Z.Ibrahim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期209-224,共16页
Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinem... Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications. 展开更多
关键词 Friction stir processing Magnesium-based composite NANO-HYDROXYAPATITE Corrosion behavior In-vitro bioactivity
下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
15
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-Zn-Zr alloy LPSO phase transformation Mechanical properties
下载PDF
Recent developments in selective laser processes for wearable devices 被引量:1
16
作者 Youngchan Kim Eunseung Hwang +3 位作者 Chang Kai Kaichen Xu Heng Pan Sukjoon Hong 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期517-547,共31页
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d... Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices. 展开更多
关键词 Selective laser process Wearable device Transformative approach Laser-induced graphene Ablation SINTERING Synthesis
下载PDF
Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’aeration process 被引量:1
17
作者 Xiemin Liu Jing Wan +5 位作者 Jinnan Sun Lin Zhang Feng Zhang Zhibing Zhang Xinyao Li Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期243-254,共12页
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o... Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm. 展开更多
关键词 Non-Newtonian fluids aeration process Power consumption Volumetric mass transfer rate Bubble size
下载PDF
Multistate transition and coupled solid-liquid modeling of motion process of long-runout landslide 被引量:1
18
作者 Yang Gao Yueping Yin +3 位作者 Bin Li Han Zhang Weile Wu Haoyuan Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2694-2714,共21页
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical... The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction. 展开更多
关键词 Long-runout landslide Multistate transition Mixed solid‒liquid flow Post-failure process Numerical simulation
下载PDF
Efficient stochastic parallel gradient descent training for on-chip optical processor 被引量:1
19
作者 Yuanjian Wan Xudong Liu +4 位作者 Guangze Wu Min Yang Guofeng Yan Yu Zhang Jian Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期5-15,共11页
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical... In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips. 展开更多
关键词 optical communications optical signal processing channel descrambling optical neural network chip silicon photonics
下载PDF
Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning 被引量:1
20
作者 Annayath Maqbool Abdul Khalad Noor Zaman Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1518-1528,共11页
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros... The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys. 展开更多
关键词 Corrosion rate Friction stir processing Virtual sample generation Particle swarm optimization Machine learning Graphical user interface
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部