Research Background: Heart failure is a type of organic heart disease caused by excessive ventricular load, leading to insufficient myocardial contractility and decreased cardiac output in the body. With the progressi...Research Background: Heart failure is a type of organic heart disease caused by excessive ventricular load, leading to insufficient myocardial contractility and decreased cardiac output in the body. With the progression of the patient's condition, gastrointestinal dysfunction is frequently complicated. At the same time, the accumulation of feces in the body (colonic impaction) can also increase the burden on the patient’s heart, triggering or exacerbating the occurrence or progression of heart failure. Purpose: this article focuses on the correlation between colonic impaction and heart failure, using the nursing experience of a case of acute left heart failure complicated by colonic impaction as an example, in order to provide clinical evidence for the care of patients with colonic impaction combined with heart failure in the future. Method: By using innovative thinking, the stomach tube is used to replace the enema tube, which is inserted through the anus to reach the end of the colon. By combining acupressure at points such as Zhongwan, Tianzhu, and Guanyuan, it helps promote the elimination of fecal impaction. Conclusion: This case reflects the innovative thinking and adaptability of nurses, providing a new clinical approach for the aggravation of the condition of long-term heart failure patients due to constipation issues. Further research in clinical practice is warranted.展开更多
BACKGROUND When an anorectal foreign body is found,its composition and shape should be evaluated,and a timely and effective treatment plan should be developed based on the patient's symptoms to avoid serious compl...BACKGROUND When an anorectal foreign body is found,its composition and shape should be evaluated,and a timely and effective treatment plan should be developed based on the patient's symptoms to avoid serious complications such as intestinal perforation caused by displacement of the foreign body.CASE SUMMARY A 54-year-old male was admitted to our outpatient clinic on June 3,2023,due to a rectal foreign body that had been embedded for more than 24 h.The patient reported using a glass electrode tube to assist in the recovery of prolapsed hemorrhoids,however,the electrode tube was inadvertently inserted into the anus and could not be removed by the patient.During hospitalization,the patient underwent surgery,and the foreign body was dragged into the rectum with the aid of colonoscopy.The anus was dilated with a comb-type pulling hook and an anal fistula pulling hook to widen the anus and remove the foreign body,and the local anal symptoms were then relieved with topical drugs.The patient was allowed to eat and drink,and an entire abdominal Computed tomography(CT)and colonoscopy were reviewed 3 d after surgery.CT revealed no foreign body residue and colonoscopy showed no metal or other residues in the colon and rectum,and no apparent intestinal tract damage.CONCLUSION The timeliness and rationality of the surgical and therapeutic options for this patient were based on a literature review of the clinical signs and conceivable conditions in such cases.The type,material and the potential risks of rectal foreign bodies should be considered.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut...Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematic...Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematically evaluated by performing laboratory tests using three different rock block types, namely circular block, and two types of elliptical block. The three types of rock block are released onto an inclined surface with the identical initial status. Parallel, anti-parallel, and oblique impact tests set at slope angles of 22.5° and 45°are conducted to study the block-slope interaction of rockfall. Lateral dispersion of rockfall is less influenced by the block shape for the oblique impact, while the post-impact behaviors are greatly affected by the block shape. The key factors influencing the deviation of the post-impact trajectory direction are the slope angle (θ) and direction difference (Δφ). An empirical model is then developed to characterize the deviation distribution of lateral dispersion by 5th and 95th percentile values with the inclusion of the two key factors. Linear function can be used to describe the 5th percentile boundary, while hyperbolic function is good for the 95th percentile boundary, which need to be validated by field tests in the subsequent research.展开更多
BACKGROUND Although metaphyseal ulnar shortening osteotomy(MUSO)is safer for the treatment of ulnar impaction syndrome(UIS)than diaphyseal ulnar shortening osteotomy(DUSO),DUSO is widely used for UIS treatment.AIM To ...BACKGROUND Although metaphyseal ulnar shortening osteotomy(MUSO)is safer for the treatment of ulnar impaction syndrome(UIS)than diaphyseal ulnar shortening osteotomy(DUSO),DUSO is widely used for UIS treatment.AIM To evaluate the effectiveness of DUSO and MUSO for UIS treatment and determine the factors that should be considered when choosing surgical treatment for UIS.METHODS Articles comparing the effectiveness of DUSO and MUSO for UIS treatment were systematically retrieved from MEDLINE(Ovid),PubMed,EMBASE,and Cochrane Library.The demography,incidence of complications,secondary operation rate,postoperative DASH score,wrist pain on the visual analogue scale,and grip strength improvement were also evaluated.In addition,the correlation between the improvement of grip strength and the shortening of osteotomy length of ulna was analyzed.The outcome of the patient was discontinuous,and the odds ratio,risk ratio(RR),and 95%CI were calculated and analyzed via RevMan5.3 software.RESULTS Six studies,including 83 patients receiving MUSO(experimental group)and 112 patients receiving DUSO(control group),were included in the meta-analysis.The second operation rate was significantly higher after DUSO than after MUSO.The DASH scores were slightly lower in the MUSO group than in the DUSO group.The patients receiving MUSO had slightly better pain relief effect than patients receiving DUSO.However,the incidence of complications and improvement of grip strength were not significantly different between the two groups.CONCLUSION Although DUSO and MUSO provide similar effects for UIS,MUSO is associated with a lower secondary operation rate,slightly lower postoperative DASH scores and slightly better pain relief effect than DUSO,indicating that MUSO can effectively be used for UIS treatment.展开更多
BACKGROUND Myocardial infarction,particularly ST-segment elevation myocardial infarction(STEMI),is a key global mortality cause.Our study investigated predictors of mortality in 96 STEMI patients undergoing primary pe...BACKGROUND Myocardial infarction,particularly ST-segment elevation myocardial infarction(STEMI),is a key global mortality cause.Our study investigated predictors of mortality in 96 STEMI patients undergoing primary percutaneous coronary intervention at Erbil Cardiac Center.Multiple factors were identified influencing in-hospital mortality.Significantly,time from symptom onset to hospital arrival emerged as a decisive factor.Consequently,our study hypothesis is:"Reducing time from symptom onset to hospital arrival significantly improves STEMI prognosis."AIM To determine the key factors influencing mortality rates in STEMI patients.METHODS We studied 96 consecutive STEMI patients undergoing primary percutaneous coronary intervention(PPCI)at the Erbil Cardiac Center.Their clinical histories were compiled,and coronary evaluations were performed via angiography on admission.Data included comorbid conditions,onset of cardiogenic shock,complications during PPCI,and more.Post-discharge,one-month follow-up assessments were completed.Statistical significance was set at P<0.05.RESULTS Our results unearthed several significant findings.The in-hospital and 30-d mortality rates among the 96 STEMI patients were 11.2%and 2.3%respectively.On the investigation of independent predictors of in-hospital mortality,we identified atypical presentation,onset of cardiogenic shock,presence of chronic kidney disease,Thrombolysis In Myocardial Infarction grades 0/1/2,triple vessel disease,ventricular tachycardia/ventricular fibrillation,coronary dissection,and the no-reflow phenomenon.Specifically,the recorded average time from symptom onset to hospital arrival amongst patients who did not survive was significantly longer(6.92±3.86 h)compared to those who survived(3.61±1.67 h),P<0.001.These findings underscore the critical role of timely intervention in improving the survival outcomes of STEMI patients.CONCLUSION Our results affirm that early hospital arrival after symptom onset significantly improves survival rates in STEMI patients,highlighting the critical need for prompt intervention.展开更多
This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used t...This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used to solve motion equations of the mechanical mechanism inside the impact grenade fuze.The paper focuses on impact velocities that are lower than 5 m s^(-1).An experiment was conducted to study the velocity of the grenade while impacting on dry sand.A high-speed camera video was used to capture the grenade positions.The grenade velocity in the impact process was generated from these video data.Some types of fitting curves are used to regress the velocity equation of the grenade while interacting with the sand media and the best-fitting model is chosen.The result shows the regression curve has a high correlation with the experiment data for grenade velocities below 5 m s^(-1).The received regression equation is useful for analyzing the working ability of the inertial mechanism inside the impact grenade or analyzing and choosing the appropriate parameters of each part in the inertial mechanism to meet the required characteristics of the mechanism.展开更多
Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the...Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with hars...The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.展开更多
Impact engineering encompasses many events of our lives.Examples include vehicle collisions,catastrophic collapse of infrastructures from explosion,ballistic impact of armour,hitting cricket balls in sports,falling of...Impact engineering encompasses many events of our lives.Examples include vehicle collisions,catastrophic collapse of infrastructures from explosion,ballistic impact of armour,hitting cricket balls in sports,falling off a bicycle.In such an event,an engineer needs to understand and quantify complex issues like identifying the impact loadings,obtaining material properties at high strain rates and evaluating structural responses and consequences.This engineering field receives great interests from industry and the research community.Several monographs have been published over the decades and related journals,such as the International Journal of Impact Engineering and Defence Technology,have been established and disseminate the latest research findings.展开更多
文摘Research Background: Heart failure is a type of organic heart disease caused by excessive ventricular load, leading to insufficient myocardial contractility and decreased cardiac output in the body. With the progression of the patient's condition, gastrointestinal dysfunction is frequently complicated. At the same time, the accumulation of feces in the body (colonic impaction) can also increase the burden on the patient’s heart, triggering or exacerbating the occurrence or progression of heart failure. Purpose: this article focuses on the correlation between colonic impaction and heart failure, using the nursing experience of a case of acute left heart failure complicated by colonic impaction as an example, in order to provide clinical evidence for the care of patients with colonic impaction combined with heart failure in the future. Method: By using innovative thinking, the stomach tube is used to replace the enema tube, which is inserted through the anus to reach the end of the colon. By combining acupressure at points such as Zhongwan, Tianzhu, and Guanyuan, it helps promote the elimination of fecal impaction. Conclusion: This case reflects the innovative thinking and adaptability of nurses, providing a new clinical approach for the aggravation of the condition of long-term heart failure patients due to constipation issues. Further research in clinical practice is warranted.
基金National Natural Science Foundation of China Project,No.82004374The Second Round of Construction Project of National TCM Academic Schools Inheritance Workshop of the State Administration of Traditional Chinese Medicine,No.[2019]62.
文摘BACKGROUND When an anorectal foreign body is found,its composition and shape should be evaluated,and a timely and effective treatment plan should be developed based on the patient's symptoms to avoid serious complications such as intestinal perforation caused by displacement of the foreign body.CASE SUMMARY A 54-year-old male was admitted to our outpatient clinic on June 3,2023,due to a rectal foreign body that had been embedded for more than 24 h.The patient reported using a glass electrode tube to assist in the recovery of prolapsed hemorrhoids,however,the electrode tube was inadvertently inserted into the anus and could not be removed by the patient.During hospitalization,the patient underwent surgery,and the foreign body was dragged into the rectum with the aid of colonoscopy.The anus was dilated with a comb-type pulling hook and an anal fistula pulling hook to widen the anus and remove the foreign body,and the local anal symptoms were then relieved with topical drugs.The patient was allowed to eat and drink,and an entire abdominal Computed tomography(CT)and colonoscopy were reviewed 3 d after surgery.CT revealed no foreign body residue and colonoscopy showed no metal or other residues in the colon and rectum,and no apparent intestinal tract damage.CONCLUSION The timeliness and rationality of the surgical and therapeutic options for this patient were based on a literature review of the clinical signs and conceivable conditions in such cases.The type,material and the potential risks of rectal foreign bodies should be considered.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
文摘Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金support from the Natural Science Foundation of China(Grant Nos.42177165 and 41672302)the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(Grant No.SKLGP2018K018).
文摘Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematically evaluated by performing laboratory tests using three different rock block types, namely circular block, and two types of elliptical block. The three types of rock block are released onto an inclined surface with the identical initial status. Parallel, anti-parallel, and oblique impact tests set at slope angles of 22.5° and 45°are conducted to study the block-slope interaction of rockfall. Lateral dispersion of rockfall is less influenced by the block shape for the oblique impact, while the post-impact behaviors are greatly affected by the block shape. The key factors influencing the deviation of the post-impact trajectory direction are the slope angle (θ) and direction difference (Δφ). An empirical model is then developed to characterize the deviation distribution of lateral dispersion by 5th and 95th percentile values with the inclusion of the two key factors. Linear function can be used to describe the 5th percentile boundary, while hyperbolic function is good for the 95th percentile boundary, which need to be validated by field tests in the subsequent research.
文摘BACKGROUND Although metaphyseal ulnar shortening osteotomy(MUSO)is safer for the treatment of ulnar impaction syndrome(UIS)than diaphyseal ulnar shortening osteotomy(DUSO),DUSO is widely used for UIS treatment.AIM To evaluate the effectiveness of DUSO and MUSO for UIS treatment and determine the factors that should be considered when choosing surgical treatment for UIS.METHODS Articles comparing the effectiveness of DUSO and MUSO for UIS treatment were systematically retrieved from MEDLINE(Ovid),PubMed,EMBASE,and Cochrane Library.The demography,incidence of complications,secondary operation rate,postoperative DASH score,wrist pain on the visual analogue scale,and grip strength improvement were also evaluated.In addition,the correlation between the improvement of grip strength and the shortening of osteotomy length of ulna was analyzed.The outcome of the patient was discontinuous,and the odds ratio,risk ratio(RR),and 95%CI were calculated and analyzed via RevMan5.3 software.RESULTS Six studies,including 83 patients receiving MUSO(experimental group)and 112 patients receiving DUSO(control group),were included in the meta-analysis.The second operation rate was significantly higher after DUSO than after MUSO.The DASH scores were slightly lower in the MUSO group than in the DUSO group.The patients receiving MUSO had slightly better pain relief effect than patients receiving DUSO.However,the incidence of complications and improvement of grip strength were not significantly different between the two groups.CONCLUSION Although DUSO and MUSO provide similar effects for UIS,MUSO is associated with a lower secondary operation rate,slightly lower postoperative DASH scores and slightly better pain relief effect than DUSO,indicating that MUSO can effectively be used for UIS treatment.
文摘BACKGROUND Myocardial infarction,particularly ST-segment elevation myocardial infarction(STEMI),is a key global mortality cause.Our study investigated predictors of mortality in 96 STEMI patients undergoing primary percutaneous coronary intervention at Erbil Cardiac Center.Multiple factors were identified influencing in-hospital mortality.Significantly,time from symptom onset to hospital arrival emerged as a decisive factor.Consequently,our study hypothesis is:"Reducing time from symptom onset to hospital arrival significantly improves STEMI prognosis."AIM To determine the key factors influencing mortality rates in STEMI patients.METHODS We studied 96 consecutive STEMI patients undergoing primary percutaneous coronary intervention(PPCI)at the Erbil Cardiac Center.Their clinical histories were compiled,and coronary evaluations were performed via angiography on admission.Data included comorbid conditions,onset of cardiogenic shock,complications during PPCI,and more.Post-discharge,one-month follow-up assessments were completed.Statistical significance was set at P<0.05.RESULTS Our results unearthed several significant findings.The in-hospital and 30-d mortality rates among the 96 STEMI patients were 11.2%and 2.3%respectively.On the investigation of independent predictors of in-hospital mortality,we identified atypical presentation,onset of cardiogenic shock,presence of chronic kidney disease,Thrombolysis In Myocardial Infarction grades 0/1/2,triple vessel disease,ventricular tachycardia/ventricular fibrillation,coronary dissection,and the no-reflow phenomenon.Specifically,the recorded average time from symptom onset to hospital arrival amongst patients who did not survive was significantly longer(6.92±3.86 h)compared to those who survived(3.61±1.67 h),P<0.001.These findings underscore the critical role of timely intervention in improving the survival outcomes of STEMI patients.CONCLUSION Our results affirm that early hospital arrival after symptom onset significantly improves survival rates in STEMI patients,highlighting the critical need for prompt intervention.
基金supported by the research project of the University of Defence in Brno DZRO-FVT22-VAROPS。
文摘This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used to solve motion equations of the mechanical mechanism inside the impact grenade fuze.The paper focuses on impact velocities that are lower than 5 m s^(-1).An experiment was conducted to study the velocity of the grenade while impacting on dry sand.A high-speed camera video was used to capture the grenade positions.The grenade velocity in the impact process was generated from these video data.Some types of fitting curves are used to regress the velocity equation of the grenade while interacting with the sand media and the best-fitting model is chosen.The result shows the regression curve has a high correlation with the experiment data for grenade velocities below 5 m s^(-1).The received regression equation is useful for analyzing the working ability of the inertial mechanism inside the impact grenade or analyzing and choosing the appropriate parameters of each part in the inertial mechanism to meet the required characteristics of the mechanism.
基金the National Natural Science Foundation of China(Nos.52001310 and 52130002)the National Science and Technology Major Project(No.J2019-VI-0019-0134)+1 种基金KC Wong Education Foundation(No.GJTD-2020-09)Institute of Metal Res earch Innovation Fund(No.2023-ZD01)。
文摘Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975526,51505425)National Key R&D Program of China(Grant No.2018YFC0808800)+1 种基金Open Project of Key Laboratory of MEM of China(Grant No.2020XFZB10)Technical Service Projects(Grant Nos.HZFS-XZ-2022-07-02,XJBY-20211221).
文摘The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.
文摘Impact engineering encompasses many events of our lives.Examples include vehicle collisions,catastrophic collapse of infrastructures from explosion,ballistic impact of armour,hitting cricket balls in sports,falling off a bicycle.In such an event,an engineer needs to understand and quantify complex issues like identifying the impact loadings,obtaining material properties at high strain rates and evaluating structural responses and consequences.This engineering field receives great interests from industry and the research community.Several monographs have been published over the decades and related journals,such as the International Journal of Impact Engineering and Defence Technology,have been established and disseminate the latest research findings.