期刊文献+
共找到1,581篇文章
< 1 2 80 >
每页显示 20 50 100
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
1
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 Rock mechanics Mechanical property seepage pressure Numerical simulation MICROCRACKS
下载PDF
Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs
2
作者 Lijun Mu Xiaojia Xue +2 位作者 Jie Bai Xiaoyan Li Xueliang Han 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1365-1379,共15页
Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the sh... Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity.Unlike conventional reservoirs,shale oil reservoirs exhibit characteristics such as low porosity,low permeability,and rich content of organic matter and clay minerals.Notably,the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant.The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous,and the mechanisms underpinning osmotic pressure effects are not fully understood.This study introduces a theoretical approach,by which a salt ion migration control equation is derived and a mathematical model for spontaneous imbibition in shale is introduced,which is able to account for both capillary and osmotic pressures.Results indicate that during the spontaneous imbibition of low-salinity fluids,osmotic effects facilitate the migration of external fluids into shale pores,thereby complementing capillary forces in displacing shale oil.When considering both capillary and osmotic pressures,the calculated imbibition depth increases by 12%compared to the case where only capillary forces are present.The salinity difference between the reservoir and the fracturing fluids significantly influences the imbibition depth.Calculations for the shutin phase reveal that the pressure between the matrix and fractures reaches a dynamic equilibrium after 28 days of shut-in.During the production phase,the maximum seepage distance in the target block is approximately 6.02 m. 展开更多
关键词 Shale oil osmotic pressure numerical simulation effective seepage distance
下载PDF
Unified analytical solution for deep circular tunnel with consideration of seepage pressure,grouting and lining 被引量:5
3
作者 LI Xue-feng DU Shou-ji CHEN Bing 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1483-1493,共11页
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone... A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed. 展开更多
关键词 UNIFIED strength theory (UST) INTERMEDIATE principal stress seepage pressure GROUTING LINING analytical solution
下载PDF
Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures 被引量:13
4
作者 FU Hong-yuan JIANG Huang-bin +3 位作者 QIU Xiang JI Yun-peng CHEN Wen ZENG Ling 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1907-1916,共10页
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy... To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function. 展开更多
关键词 silty mudstone seepage characteristic confining pressure TEMPERATURE PERMEABILITY
下载PDF
Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures 被引量:5
5
作者 Yueli Feng Yuetian Liu +1 位作者 Jian Chen Xiaolong Mao 《Fluid Dynamics & Materials Processing》 EI 2022年第2期395-415,共21页
Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used t... Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle,spacing,and relevant elastic parameters on the principal value of the permeability tensor.The fracture apertures at different angles show different change rates,which influence the relative permeability for different sets of fractures.Furthermore,under the same pressure condition,the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates.This phenomenon leads to a variation in the water seepage direction in typical water-injection applications,thereby hindering the expected exploitation effect of the original well network.Overall,the research findings in this paper can be used as guidance to improve the effectiveness of water injection exploitation in the oil field industry. 展开更多
关键词 pressure sensitive fracture network physical simulation seepage laws
下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:11
6
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
下载PDF
Active earth pressure acting on retaining wall considering anisotropic seepage effect 被引量:4
7
作者 HU Zheng YANG Zhong-xuan Stephen Philip WILKINSON 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1202-1211,共10页
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ... This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered. 展开更多
关键词 Active earth pressure seepage Anisotropic permeability Retaining wall Fourier series expansion Cohesionless soils
下载PDF
Effects of temperature and pressure differences on water seepage in breccia 被引量:2
8
作者 XU Longjun WANG Xingmin XIAN Xuefu 《Chinese Journal Of Geochemistry》 EI CAS 2012年第3期260-263,共4页
Effects of temperature and pressure differences on water seepage in breccia were investigated by using the physicochemical seepage instrument.The results show that the relationship of flow and pressure differences can... Effects of temperature and pressure differences on water seepage in breccia were investigated by using the physicochemical seepage instrument.The results show that the relationship of flow and pressure differences can be expressed by a linear equation,and the seepage coefficient is linearly correlated with temperature.The relation-ship between seepage flow and temperature could be described with the linear equation.The constant and tempera-ture seepage coefficient showed a linear relation with pressure.Binary quantitative equation for the seepage flow,temperature and pressure was obtained,and explained with experimental data and theoretical analysis. 展开更多
关键词 压力差异 角砾岩 温度 渗水 线性相关 渗透系数 方程表示 线性方程
下载PDF
Active earth pressure for subgrade retaining walls in cohesive backfills with tensile strength cut-off subjected to seepage effects
9
作者 FU He-lin WANG Cheng-yang LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2148-2159,共12页
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred... The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion. 展开更多
关键词 active earth pressure seepage effect subgrade retaining wall tensile strength cut-off
下载PDF
Numerical simulation of dynamic pore pressure in asphalt pavement 被引量:7
10
作者 崔新壮 金青 +1 位作者 商庆森 翟继光 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期79-82,共4页
For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis... For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited. 展开更多
关键词 road engineering asphalt pavement moisture damage dynamic pore pressure seepage force dynamic deflection
下载PDF
Vertical Migration of Fine-Grained Sediments from Interior to Surface of Seabed Driven by Seepage Flows–‘Sub-Bottom Sediment Pump Action' 被引量:9
11
作者 ZHANG Shaotong JIA Yonggang +5 位作者 WEN Mingzheng WANG Zhenhao Zhang Yaqi ZHU Chaoqi Li Bowen LIU Xiaolei 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第1期15-24,共10页
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, ... A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area. 展开更多
关键词 sediment PUMP action vertical migration FINE-GRAINED PORE pressure seepage flows
下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:8
12
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model Particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON seepage pressure Mutation factor Piezometric level
下载PDF
Gas seepage equation of deep mined coal seams and its application 被引量:30
13
作者 HU Guo-zhong WANG Hong-tu TAN Hai-xiang FAN Xiao-gang YUAN Zhi-gang 《Journal of China University of Mining and Technology》 EI 2008年第4期483-487,共5页
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se... In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams. 展开更多
关键词 deep mining in-situ stress field geothermal temperature field gas seepage equation of coal seam gas pressure
下载PDF
Stress characteristics of surrounding rocks for inner water exosmosis in high-pressure hydraulic tunnels 被引量:2
14
作者 俞缙 李天斌 +1 位作者 张建智 蔡燕燕 《Journal of Central South University》 SCIE EI CAS 2014年第7期2970-2976,共7页
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ... Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability. 展开更多
关键词 high pressure hydraulic tunnel inner water exosmosis physical theory seepage factor stress redistribution plane strain theory
下载PDF
Experimental Study on Seepage Characteristics of a Soil-Rock Mixture in a Fault Zone 被引量:2
15
作者 Pengfei Wang Xiangyang Zhang 《Fluid Dynamics & Materials Processing》 EI 2022年第2期271-283,共13页
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u... A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship. 展开更多
关键词 Fault zone rock block proportion soil-rock mixture confining pressure loading and unloading seepage characteristic
下载PDF
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta 被引量:1
16
作者 王虎 刘红军 +1 位作者 张民生 王秀海 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第1期200-211,共12页
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore ... Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage. 展开更多
关键词 wave loads seepage excess pore pressure POCKMARKS Huanghe (Yellow) River delta
下载PDF
Seismic passive earth thrust of submerged backfill with two-dimensional steady seepage 被引量:1
17
作者 黄睿 夏唐代 刘志军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1062-1069,共8页
To investigate the seismic passive earth thrust with two-dimensional steady seepage, a general pseudo-dynamic solution was established based on the limit equilibrium analysis. This solution was purposefully applied to... To investigate the seismic passive earth thrust with two-dimensional steady seepage, a general pseudo-dynamic solution was established based on the limit equilibrium analysis. This solution was purposefully applied to a waterfront gravity wall, which retains a submerged backfill with a drainage system along the backfill-structure interface. The wall was assumed to move towards the backfill to the passive failure state. And the theoretical derivation considered the pore pressures induced by the seepage, the excess pore pressures generated by the earthquake and the seismic inertial forces. Thereinto, the hydrostatic and hydrodynamic pressures were calculated by the analytical formulas, while the seismic forces were obtained by the pseudo-dynamic method. In the parametric study, the results indicate that the velocity of shear wave has a more prominent impact on the seismic passive earth thrust than that of primary wave. Both the horizontal and vertical seismic actions decrease the passive earth pressure, but the horizontal one affects the amplitude of the earth pressure coefficient more significantly. Moreover, the soil friction and the wall friction distinctly increase the seismic passive earth pressure just like the static situation. The comparison shows that the results are consistent with the previous work, which verifies its validity. 展开更多
关键词 earth pressure earthquake pseudo-dynamic method seepage
下载PDF
Generation and propagation characteristics of fluctuation pressure in hydraulic fracturing with unstable fluid-injection
18
作者 ZHU Ge DONG Shi-min +1 位作者 JIA He-tong DONG Zi-long 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期186-196,共11页
Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the frac... Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the fracturing effect.Obviously,the propagation process of fracturing fluid along the pipe string is crucial.In this paper,the fluid transient dynamics model in the pipe string was established,considering the boundary conditions of variable injection flow rate and reservoir seepage,and the unsteady friction was also taken into account.The above model was solved by characteristics and finite difference method respectively.Furthermore,the influences of geological parameters and fluid injection schemes on fluctuating pressure were also analyzed.The results show that unstable fluid-injection can cause noticeable fluctuation of fracturing fluid in the pipe string.Simultaneously,there is attenuation during the propagation of pressure fluctuation.The variation frequency of unstable fluid-injection and well depth have significant effects on pressure fluctuation amplitude at the bottom of the well.This research is conducive to understanding the mechanism of unstable fluid-injection hydraulic fracturing and providing guidance for the design of fluid-injection scheme. 展开更多
关键词 hydraulic fracturing unstable injection transient flow fluctuation pressure seepage
下载PDF
Study of the Seepage Mechanism in Thick Heterogeneous Gas Reservoirs
19
作者 Xin Huang Yunpeng Jiang +3 位作者 Daowu Huang Xianke He Xianguo Zhang Ping Guo 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1679-1691,共13页
The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,stro... The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,strong heterogeneity,and high water saturation.Moreover,their percolation mechanisms are more complex.The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressuredepletion conditions(from the Xihu Depression in the East China Sea Basin).It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity.The reservoir stress sensitivity is related to permeability and rock composition.Stress sensitivity is generally low when permeability is high or in the early stage of gas reservoir development.It is also shown that in sand conglomerates,especially the more sparsely filled parts,the interstitial materials among the conglomerates can be rapidly dislodged from the skeleton particles under stress.This material can therefore disperse,migrate,and block the pore throat producing serious,stress-sensitive damage. 展开更多
关键词 seepage mechanism low-permeability gas reservoir threshold pressure gradient stress sensitivity control factors
下载PDF
富水区水工隧洞外水压力降压措施研究
20
作者 徐靖 曹远宜 +2 位作者 刘畅 张继勋 任旭华 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期16-21,共6页
外水压力是影响隧洞稳定及衬砌结构安全性的重要因素,特别是对富水地层深埋水工隧洞,高外水压力给衬砌设计带来巨大挑战.目前隧洞排水降压措施没有统一的标准,且主要聚焦于对衬砌外水压力的影响,对渗流场的影响分析还有待加强.本文依托... 外水压力是影响隧洞稳定及衬砌结构安全性的重要因素,特别是对富水地层深埋水工隧洞,高外水压力给衬砌设计带来巨大挑战.目前隧洞排水降压措施没有统一的标准,且主要聚焦于对衬砌外水压力的影响,对渗流场的影响分析还有待加强.本文依托滇中引水工程松林隧洞,借助ABAQUS软件开展隧洞围岩及衬砌结构流固耦合分析,分析在不同灌浆圈参数及排水布置方案下,隧洞渗流场及衬砌外水压力的变化规律.研究结果表明:通过改变灌浆圈厚度或降低灌浆圈的渗透性均可有效降低衬砌外水压力并减小隧洞开挖对渗流场的影响;布置排水孔亦能有效降低衬砌外水压力,且对距离排水孔越近降压效果越显著,离排水孔越远降低幅度越小且对渗流场产生较大影响,建议在实际工程中应采取堵排结合的措施来降低外水压力,并对排水孔及灌浆圈开展优化设计,以得到最优减压效果. 展开更多
关键词 隧洞 灌浆圈 排水孔 外水压力 渗流场
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部