Gossip-based protocols have attracted more and more attention because of their simplicity and reliability.They can be applied to large-scale overlays for solving problems such as topology management,information dissem...Gossip-based protocols have attracted more and more attention because of their simplicity and reliability.They can be applied to large-scale overlays for solving problems such as topology management,information dissemination,and aggregation.However,previous works sample nodes by their indegrees,without considering the differences in capability among nodes,and result in losing global load balancing.This paper proposes a load balancing gossip protocol for self-organizing overlays-LBTMP(Load-Balancing Topology Management Protocol),which takes into account the differences in capability among nodes and real loads.The novel protocol takes remainder service ability as the determinant for node selection metric,making light loading nodes from local neighbor view as returned samples preferentially.In the meantime,LBTMP selects light loading nodes preferentially for topology information exchange,which can diffuse light loading nodes over the whole overlay more quickly.Simulations show that returned sample node selection is biased to light loading nodes in a global view,and the overlay tends to load balancing.展开更多
The capability of embedded piezoelectric wafer active sensors(PWAS)to perform in-situ nondestructive evaluation(NDE)for structural health monitoring(SHM)of reinforced concrete(RC)structures strengthened with fiber rei...The capability of embedded piezoelectric wafer active sensors(PWAS)to perform in-situ nondestructive evaluation(NDE)for structural health monitoring(SHM)of reinforced concrete(RC)structures strengthened with fiber reinforced polymer(FRP)composite overlays is explored.First,the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer.It was found that the presence of a disbond crack drastically changes the electromecfianical(E/M)impedance spectrum lneasurcd at the PWAS terlninals.The spectral changes depend on the distance between the PWAS and the crack tip.Second,large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer(CFRP)composite overlay.The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles.During these fatigue tests,the CFRP overlay experienced disbonding beginning at about 500,000 cycles.The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection.Good correlation between the PWAS readings and the position and extent of disbond damage was observed.These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays.展开更多
This paper reports a practical pavement overlay design method based on PCI (Pavement Condition Index). Current pavement investigation method (JTJ 073 96) is compared to the ASTM D 5340, which is the standard test met...This paper reports a practical pavement overlay design method based on PCI (Pavement Condition Index). Current pavement investigation method (JTJ 073 96) is compared to the ASTM D 5340, which is the standard test method for airport pavement condition evaluation initially developed for US Air Force. The deficiency in the calculation of PCI based on field data in JTJ 073 is discussed. The proposed design method is compared to AASHTO overlay design method with good agreement. The paper concludes with an example illustrating how the existing pavement structural capacity is related to pavement distress survey results. The presented design method can be used in the design for overlay rehabilitation of pavements of highways, urban streets and airports.展开更多
Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental ...Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental benefits of pavements.To promote the low-carbon development of ultrathin overlays,this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions.Firstly,the skid resistance,noise reduction,rutting resistance,and crack resistance of ultrathin overlays were evaluated.The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%.The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB.The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%.Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%.Due to the thinner thickness and better road performance,the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40%compared with conventional overlays.Secondly,several environmentally friendly functions of ultra-thin overlay were investigated,including snow melting and deicing,exhaust gas purification and pavement cooling.The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface.Therefore,the snow melting effect of self-ice-melting was better.In addition,the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50%of the exhaust gas.The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1℃.The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8℃.In addition,numerous typical global engineering applications of functional ultra-thin overlay were summarized.This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.展开更多
目的研究一种面向远程医疗的覆盖网络(Overlay Network for Telemedicine,ONTM)模型,以改善传统互联网无法完全满足远程医疗服务多样化服务质量的难题。方法基于覆盖网络的架构建立ONTM模型,并分为控制平面和数据平面,负责整体的策略调...目的研究一种面向远程医疗的覆盖网络(Overlay Network for Telemedicine,ONTM)模型,以改善传统互联网无法完全满足远程医疗服务多样化服务质量的难题。方法基于覆盖网络的架构建立ONTM模型,并分为控制平面和数据平面,负责整体的策略调控和网络传输。在ONTM模型的接入侧采用多链路聚合策略,同时将其传输层进一步细分为信源/信道传输子层。使用网络监控软件测试终端之间的网络性能参数。结果基于ONTM模型的新型远程医疗系统累计完成了超过10000次的远程医疗服务,涵盖了15个临床科室。在ONTM模型的调控下,5G远程大脑起搏器手术期间北京到三亚的平均延时低至76 ms,丢包率几乎为0,流量稳定在10 Mbps,优于通用5G网络。结论ONTM模型能够保证远程医疗数据的稳定传输,可为特殊环境下开展远程医疗提供新思路。展开更多
基金supported by State Key Program of National Science Foundation of China under Grant No.2010ZX03004-003National Natural Science Foundation of China under GrantNo.60772106,60970160.
文摘Gossip-based protocols have attracted more and more attention because of their simplicity and reliability.They can be applied to large-scale overlays for solving problems such as topology management,information dissemination,and aggregation.However,previous works sample nodes by their indegrees,without considering the differences in capability among nodes,and result in losing global load balancing.This paper proposes a load balancing gossip protocol for self-organizing overlays-LBTMP(Load-Balancing Topology Management Protocol),which takes into account the differences in capability among nodes and real loads.The novel protocol takes remainder service ability as the determinant for node selection metric,making light loading nodes from local neighbor view as returned samples preferentially.In the meantime,LBTMP selects light loading nodes preferentially for topology information exchange,which can diffuse light loading nodes over the whole overlay more quickly.Simulations show that returned sample node selection is biased to light loading nodes in a global view,and the overlay tends to load balancing.
基金the National Seienee Foundation through grants NSF#CMS-9908293 and NSF INT-9904493the Federal Highway Administration and the South Carolina Department of TransPortation(projeet Number 614)
文摘The capability of embedded piezoelectric wafer active sensors(PWAS)to perform in-situ nondestructive evaluation(NDE)for structural health monitoring(SHM)of reinforced concrete(RC)structures strengthened with fiber reinforced polymer(FRP)composite overlays is explored.First,the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer.It was found that the presence of a disbond crack drastically changes the electromecfianical(E/M)impedance spectrum lneasurcd at the PWAS terlninals.The spectral changes depend on the distance between the PWAS and the crack tip.Second,large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer(CFRP)composite overlay.The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles.During these fatigue tests,the CFRP overlay experienced disbonding beginning at about 500,000 cycles.The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection.Good correlation between the PWAS readings and the position and extent of disbond damage was observed.These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays.
文摘This paper reports a practical pavement overlay design method based on PCI (Pavement Condition Index). Current pavement investigation method (JTJ 073 96) is compared to the ASTM D 5340, which is the standard test method for airport pavement condition evaluation initially developed for US Air Force. The deficiency in the calculation of PCI based on field data in JTJ 073 is discussed. The proposed design method is compared to AASHTO overlay design method with good agreement. The paper concludes with an example illustrating how the existing pavement structural capacity is related to pavement distress survey results. The presented design method can be used in the design for overlay rehabilitation of pavements of highways, urban streets and airports.
基金the National Key Research and Development Program of China(2022YFE0137300)the National Natural Science Foundation of China(52078018)the German Research Foundation(SFB/TRR 339 and 453596084).
文摘Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental benefits of pavements.To promote the low-carbon development of ultrathin overlays,this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions.Firstly,the skid resistance,noise reduction,rutting resistance,and crack resistance of ultrathin overlays were evaluated.The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%.The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB.The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%.Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%.Due to the thinner thickness and better road performance,the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40%compared with conventional overlays.Secondly,several environmentally friendly functions of ultra-thin overlay were investigated,including snow melting and deicing,exhaust gas purification and pavement cooling.The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface.Therefore,the snow melting effect of self-ice-melting was better.In addition,the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50%of the exhaust gas.The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1℃.The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8℃.In addition,numerous typical global engineering applications of functional ultra-thin overlay were summarized.This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.