This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of...This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .展开更多
Four fat and elongated(F&E)contents(0%,original,30%,and 40%)were investigated to evaluate the effects of F&Eparticles on the performance of porous asphalt mixture(P A).Laboratory tests including volumetric det...Four fat and elongated(F&E)contents(0%,original,30%,and 40%)were investigated to evaluate the effects of F&Eparticles on the performance of porous asphalt mixture(P A).Laboratory tests including volumetric determination,two-dimensional image analysis,Cantabro loss tests,breakdown tests,and permeability tests were conducted to evaluate the volumetric properties,the state of stone-onstone contact,durability,skeleton stability and permeability of PA,respectively.The test results indicate that the F&E content was a significant factor for total air voids,aggregate skeleton break down,and permeability.The functionality,rutting resistance,long-term durability,and skeleton stability decrease with the increase of F&E content since F&E aggregates in porous asphalt mixtures have a tendency to breakdown.Compared with traditional dense graded mixtures,PA is more sensitive to the F&E content due to an open graded aggregate structure.Therefore,the stricter requiement for F&E content should be met for porous asphalt mixtures than the one for traditional deese graded mixture.展开更多
Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress for...Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress form.This paper discussed the effect of aggregate gradation on the low temperature performance in asphalt paving mixtures.A total of 11 asphalt mixtures with 11 different aggregate gradations and one asphalt binder content were studied.Volumetric properties of the coarse aggregate and asphalt mixtures showed aggregate grading has a significant impact on the degree of aggregate interlock in asphalt mixtures.A trend is existed in the low temperature performance with the change of gradation.With the aid of mathematic statistics,it indicates gradation affects the low temperature performance significantly.The findings also indicate the relationship between the degree of aggregate interlock in asphalt mixtures and the low temperature performance:With the stone-to-stone contact developed,the mixture has a high energy to resist contract and deformation at low temperature.The properties of fine aggregate and asphalt play an important part in resisting low temperature cracking in floating structure.But it provides lower energy to resist low temperature cracking compared to the skeleton structure.展开更多
The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce ...The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...展开更多
To use many asbestos tailings collected in Ya-Lu highway,and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures,and properties of some asphalt mixtures were evaluated as wel...To use many asbestos tailings collected in Ya-Lu highway,and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures,and properties of some asphalt mixtures were evaluated as well.X-ray diffraction (XRD),X-ray fluorescent (XRF),and atomic absorption spectrophotometry (AAS) were employed to determine the solid waste content of copper,zinc,lead,and cadmium.Volume properties and pavement performances of AC-25 asphalt mixture with asbestos tailings were also evaluated compared with those with basalt as aggregates.XRD and XRF measurement results infer that asbestos tailing is an excellent road material.Volume properties of AC-25 asphalt mixture with asbestos tailings satisfied the related specifications.No heavy metals and toxic pollution were detected in AAS test and the value of pH test is 8.23,which is help to the adhesion with asphalt in the asphalt concrete.When compared with basalt,high temperature property and the resistance to low temperature cracking of AC-25 asphalt mixture was improved by using asbestos tailings as aggregates.In-service AC-25 asphalt pavement with asbestos tailings also presented excellent performance and British Pendulum Number (BPN) coefficient of surface.展开更多
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogra...Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.展开更多
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradatio...Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradation design was given. The gradation composite design for LSPM shows that the LSPM nominal maximum size ( N MS) should be larger than 26.5 mm, and the NMS sieve passing percentage should be greater than 50%. Through experiments and calculations on the volume properties of the aggregate, the range of aggregate gradation curve of LSPM was given. In terms of asphalt binder's normalized test results, MAC-70 and SBS modified asphalt were selected as the asphalt binders. The applicability of large scale Marshall Method and gyratory compaction method to shape specimens was investigated. Based on the asphalt mixture performance evaluation, the optimum asphalt content range (3.1%-3.6%), the bitumen film's thickness range (13-16 μm) and the air void range (13%-18 %) were recommended. Finally, LSPM was tested by the laboratory performance tests including rutting resistance test, fatigue test and water stability test. The theoretic and practical analysis shows that LSPM has a good performance on water permeability, rutting resistance and reflection crack resistance.展开更多
A glass crusher was developed to improve the waste glass crushing process.The waste glass was recycled,crushed and sieved to different particle sizes as glass aggregates,and the surface of glass aggregates was treated...A glass crusher was developed to improve the waste glass crushing process.The waste glass was recycled,crushed and sieved to different particle sizes as glass aggregates,and the surface of glass aggregates was treated by nano-Fe2O3 suspension to improve the anti-striping property.The glasphalt mixture made by partly replacing mineral aggregates with glass aggregates was designed and evaluated.The sizes of glass aggregates were selected to be 2.36 and 4.75 mm,and the optimum concentration of nano-Fe2O3 suspension was determined to be 10%.The optimum asphalt content(OAC)was determined by the Marshall method and the glass aggregate content.The influence of the glass aggregate content on the technical properties of glasphalt mixtures were analyzed by the rutting test,three-point bending test,freeze-thaw splitting test and skid resistance test.The results show that the optimal content of glass aggregates and OAC are recommended to be 15%and 4.4%,respectively.These environmentally-friendly glasphalt mixtures can solve the problem of environmental pollution caused by waste glass,as well as reducing the cost of pavement materials and construction.展开更多
Coarse and fine aggregate constitutes an average of approximately 55% to 80% of the total volume of concrete materials.Concrete remains the most commonly-used building material worldwide.As a result,the massive use of...Coarse and fine aggregate constitutes an average of approximately 55% to 80% of the total volume of concrete materials.Concrete remains the most commonly-used building material worldwide.As a result,the massive use of aggregate will have a direct impact on the earth′s natural resources if an appropriate replacement material is not found,violating the spirit of sustainable development.This study makes a preliminary examination of using coarse and fine aggregate produced from discarded construction materials in concrete.Results indicate that the compressive strength of densified mixture concrete at 28 days can reach 56.88 MPa(recycled materials used as coarse aggregate,and natural sand used as fine aggregate)and 53.33 MPa(recycled materials used as both coarse and fine aggregate).While this type of material is not yet fully understood,further research into this area should enable feasible applications in concrete.However,unsuitable mixtures have serious impact on the durability and overall economy of concrete.Pending further research on suitable mixture designs,a complete application of recycled aggregate in concrete can be expected.展开更多
To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the partic...To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the particle area ratio was achieved by applying sector scan for horizontal specimen and vertical scan for vertical one.The research result indicates that the influence of random distribution of aggregates in cutting the specimen can be eliminated by using colored aggregates to distinguish coarse and fine aggregates and using color threshold to segment the images.Choosing three typical gradations,proving particle area ratio obeying normal distribution and using the variability of particle area ratio as an index,it is feasible to quantitatively evaluate the homogeneity of asphalt mixtures.展开更多
文摘This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .
基金Transportation Science and Technology Project of Jiangsu Province(No.7621000115)Science and Technology Project of Nanjing Committee of Housing and Urban-Rural Development(No.ks1611)
文摘Four fat and elongated(F&E)contents(0%,original,30%,and 40%)were investigated to evaluate the effects of F&Eparticles on the performance of porous asphalt mixture(P A).Laboratory tests including volumetric determination,two-dimensional image analysis,Cantabro loss tests,breakdown tests,and permeability tests were conducted to evaluate the volumetric properties,the state of stone-onstone contact,durability,skeleton stability and permeability of PA,respectively.The test results indicate that the F&E content was a significant factor for total air voids,aggregate skeleton break down,and permeability.The functionality,rutting resistance,long-term durability,and skeleton stability decrease with the increase of F&E content since F&E aggregates in porous asphalt mixtures have a tendency to breakdown.Compared with traditional dense graded mixtures,PA is more sensitive to the F&E content due to an open graded aggregate structure.Therefore,the stricter requiement for F&E content should be met for porous asphalt mixtures than the one for traditional deese graded mixture.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50778057)the Research Fund for the Doctoral Program of Higher Education(Grant No.20060213002)
文摘Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress form.This paper discussed the effect of aggregate gradation on the low temperature performance in asphalt paving mixtures.A total of 11 asphalt mixtures with 11 different aggregate gradations and one asphalt binder content were studied.Volumetric properties of the coarse aggregate and asphalt mixtures showed aggregate grading has a significant impact on the degree of aggregate interlock in asphalt mixtures.A trend is existed in the low temperature performance with the change of gradation.With the aid of mathematic statistics,it indicates gradation affects the low temperature performance significantly.The findings also indicate the relationship between the degree of aggregate interlock in asphalt mixtures and the low temperature performance:With the stone-to-stone contact developed,the mixture has a high energy to resist contract and deformation at low temperature.The properties of fine aggregate and asphalt play an important part in resisting low temperature cracking in floating structure.But it provides lower energy to resist low temperature cracking compared to the skeleton structure.
文摘The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...
基金Funded by the Western Region Transport Development Science and Technology Program (200731800003)
文摘To use many asbestos tailings collected in Ya-Lu highway,and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures,and properties of some asphalt mixtures were evaluated as well.X-ray diffraction (XRD),X-ray fluorescent (XRF),and atomic absorption spectrophotometry (AAS) were employed to determine the solid waste content of copper,zinc,lead,and cadmium.Volume properties and pavement performances of AC-25 asphalt mixture with asbestos tailings were also evaluated compared with those with basalt as aggregates.XRD and XRF measurement results infer that asbestos tailing is an excellent road material.Volume properties of AC-25 asphalt mixture with asbestos tailings satisfied the related specifications.No heavy metals and toxic pollution were detected in AAS test and the value of pH test is 8.23,which is help to the adhesion with asphalt in the asphalt concrete.When compared with basalt,high temperature property and the resistance to low temperature cracking of AC-25 asphalt mixture was improved by using asbestos tailings as aggregates.In-service AC-25 asphalt pavement with asbestos tailings also presented excellent performance and British Pendulum Number (BPN) coefficient of surface.
基金the support of the National Natural Science Foundation of China (Grant Nos. 41472272, 41102194)the Key Deployment Project of the Chinese Academy of Sciences (KZZD-EW-05-01)the Science Foundation for Excellent Youth Scholars of Sichuan University (2013SCU04A07)
文摘Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.
文摘Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradation design was given. The gradation composite design for LSPM shows that the LSPM nominal maximum size ( N MS) should be larger than 26.5 mm, and the NMS sieve passing percentage should be greater than 50%. Through experiments and calculations on the volume properties of the aggregate, the range of aggregate gradation curve of LSPM was given. In terms of asphalt binder's normalized test results, MAC-70 and SBS modified asphalt were selected as the asphalt binders. The applicability of large scale Marshall Method and gyratory compaction method to shape specimens was investigated. Based on the asphalt mixture performance evaluation, the optimum asphalt content range (3.1%-3.6%), the bitumen film's thickness range (13-16 μm) and the air void range (13%-18 %) were recommended. Finally, LSPM was tested by the laboratory performance tests including rutting resistance test, fatigue test and water stability test. The theoretic and practical analysis shows that LSPM has a good performance on water permeability, rutting resistance and reflection crack resistance.
基金The Project of the Department of Science&Technology of Shaanxi Province(No.2016KJXX-69,2016ZDJC-24,2017KCT-13)China Postdoctoral Science Foundation(No.2017M620434)the Special Fund for Basic Scientific Research of Central College of Chang’an University(No.310821153502,310821173501)
文摘A glass crusher was developed to improve the waste glass crushing process.The waste glass was recycled,crushed and sieved to different particle sizes as glass aggregates,and the surface of glass aggregates was treated by nano-Fe2O3 suspension to improve the anti-striping property.The glasphalt mixture made by partly replacing mineral aggregates with glass aggregates was designed and evaluated.The sizes of glass aggregates were selected to be 2.36 and 4.75 mm,and the optimum concentration of nano-Fe2O3 suspension was determined to be 10%.The optimum asphalt content(OAC)was determined by the Marshall method and the glass aggregate content.The influence of the glass aggregate content on the technical properties of glasphalt mixtures were analyzed by the rutting test,three-point bending test,freeze-thaw splitting test and skid resistance test.The results show that the optimal content of glass aggregates and OAC are recommended to be 15%and 4.4%,respectively.These environmentally-friendly glasphalt mixtures can solve the problem of environmental pollution caused by waste glass,as well as reducing the cost of pavement materials and construction.
文摘Coarse and fine aggregate constitutes an average of approximately 55% to 80% of the total volume of concrete materials.Concrete remains the most commonly-used building material worldwide.As a result,the massive use of aggregate will have a direct impact on the earth′s natural resources if an appropriate replacement material is not found,violating the spirit of sustainable development.This study makes a preliminary examination of using coarse and fine aggregate produced from discarded construction materials in concrete.Results indicate that the compressive strength of densified mixture concrete at 28 days can reach 56.88 MPa(recycled materials used as coarse aggregate,and natural sand used as fine aggregate)and 53.33 MPa(recycled materials used as both coarse and fine aggregate).While this type of material is not yet fully understood,further research into this area should enable feasible applications in concrete.However,unsuitable mixtures have serious impact on the durability and overall economy of concrete.Pending further research on suitable mixture designs,a complete application of recycled aggregate in concrete can be expected.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50808087)
文摘To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the particle area ratio was achieved by applying sector scan for horizontal specimen and vertical scan for vertical one.The research result indicates that the influence of random distribution of aggregates in cutting the specimen can be eliminated by using colored aggregates to distinguish coarse and fine aggregates and using color threshold to segment the images.Choosing three typical gradations,proving particle area ratio obeying normal distribution and using the variability of particle area ratio as an index,it is feasible to quantitatively evaluate the homogeneity of asphalt mixtures.