Recently,nanoparticles have been used along with surfactants for enhancing oil recovery.Although the recent studies show that oil recovery is enhanced using nanoparticle/surfactant solutions,some effective parameters ...Recently,nanoparticles have been used along with surfactants for enhancing oil recovery.Although the recent studies show that oil recovery is enhanced using nanoparticle/surfactant solutions,some effective parameters and mechanisms involved in the oil recovery have not yet been investigated.Therefore,the temperature effect on the stability of nanoparticle/surfactant solutions and ultimate oil recovery has been studied in this work,and the optimal concentrations of both SiO2 nanoparticle and surfactant(sodium dodecyl sulfate)have been determined by the Central Composite Design method.In addition,the simultaneous effects of parameters and their interactions have been investigated.Study of the stability of the injected solutions indicates that the nanoparticle concentration is the most important factor affecting the solution stability.The surfactant makes the solution more stable if used in appropriate concentrations below the CMC.According to the micromodel flooding results,the most effective factor for enhancing oil recovery is temperature compared to the nanoparticle and surfactant concentrations.Therefore,in floodings with higher porous medium temperature,the oil viscosity reduction is considerable,and more oil is recovered.In addition,the surfactant concentration plays a more effective role in reservoirs with higher temperatures.In other words,at a surfactant concentration of 250 ppm,the ultimate oil recovery is improved about 20%with a temperature increase of 20°C.However,when the surfactant concentration is equal to 750 ppm,the temperature increase enhances the ultimate oil recovery by only about 7%.Finally,the nanoparticle and surfactant optimum concentrations determined by Design-Expert software were equal to 46 and 159 ppm,respectively.It is worthy to note that obtained results are validated by the confirmation test.展开更多
In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes o...In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks.展开更多
This study describes the coral communities near Qatarand Abu Dhabi (UAE) ten years after the recurrent elevated temperature anomalies of 1996, 1998 and 2002 which resulted in the mass mortality of Acropora spp. Data d...This study describes the coral communities near Qatarand Abu Dhabi (UAE) ten years after the recurrent elevated temperature anomalies of 1996, 1998 and 2002 which resulted in the mass mortality of Acropora spp. Data derived from photo transects taken over a four-year period were analyzed to characterize the existing coral communities, to compare these to the pre- and post-disturbance communities in the adjacent waters near Dubai, and to project the time-frames required for the communities to return to pre-disturbance levels. The massive corals, dominated by Porites spp. and faviids, showed no long-terms affects associated with exposures to the three thermal anomalies;whereas acroporids, comprising 0% - 8% of the live coral cover, were in various stages of recovery. Projections indicated that acroporid regeneration will require 15 - 32 years to achieve the ≥40% pre-disturbance area cover. The existing communities are too small in size and number to be self-seeding;thus, they are dependent upon the recruitment of larvae from remote refuges of colonies that survived the thermal anomalies. Efforts to identify these refuges and to establish appropriate multi-national conservation programs shall become critical to the future survival of acroporids throughout the southeasternArabian Gulfas the projected regeneration times exceed the periods between disturbances, which are expected to occur more frequently as a result of global climate change.展开更多
Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dis...Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.展开更多
The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of p...The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of proliferating (P) cells in C57BL/6J mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after the administration of pimonidazole followed by TPZ treatment or MTH. Twenty-four hours later, assessment of the responses of Q and total (= P + Q) cells were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. With γ-rays only, the pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using a delayed assay, was more clearly observed in Q cells than total cells. Post-irradiation MTH more remarkably repressed the decrease in radio-sensitivity in the Q cell than the total cells. Post-irradiation TPZ administration produced a large radio-sensitizing effect on both total and Q cells, especially on Q cells. On the other hand, in pimonidazole-unlabeled cell fractions in both total and Q cells, TPZ suppressed the reduction in sensitivity due to delayed assay much more efficiently than MTH, whereas no radio-sensitizing effect was produced. Not only through suppressing the recovery from radiation-induced damage but also through radio-sensitizing effect, post-irradiation TPZ administration is very useful for repressing the increase in the difference in radio-sensitivity due to the delayed assay not only between total and Q tumor cells but also between the pimonidazole-unlabeled and the whole cell fractions within the total and Q tumor cells.展开更多
Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures l...Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomecha...The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles.展开更多
A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,th...A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.展开更多
In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductanc...In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve.展开更多
Chemical loss such as surfactants and alkalis by adsorption to reservoir rock surface is an important issue in enhanced oil recovery(EOR). Here, we investigated the adsorption behaviors of anionic surfactants and alka...Chemical loss such as surfactants and alkalis by adsorption to reservoir rock surface is an important issue in enhanced oil recovery(EOR). Here, we investigated the adsorption behaviors of anionic surfactants and alkalis on silica for the first time as a function of temperature using quartz crystal microbalance with dissipation(QCM-D). The results demonstrated that the temperature dependent critical micelle concentration of alcohol alkoxy sulfate(AAS) surfactant can be quantitatively described by the thermodynamics parameters of micellization, showing a mainly entropy-driven process. AAS adsorption was mediated under varying temperature conditions, by divalent cations for bridging effect, monovalent cations competitive for adsorption sites but not giving cation bridging, pH regulation of deprotonated sites of silica, presence of alkoxy groups in the surfactants, and synergistic effect of surfactant coinjection. The addition of organic alkalis can enhance the overall adsorption of the species with AAS,whereas inorganic alkali of Na_(2)CO_(3) had capability of the sequestration of the divalent ions, whose addition would reduce AAS adsorption. The typical AAS adsorption indicated a non-rigid multilayer,estimated to have between 2 and 5 layers, with a likely compact bilayer followed by disorganized and unstable further layering. The new fundamental understanding about temperature effect on surfactants and alkalis adsorption contributes to optimizing the flooding conditions of chemicals and developing more efficient mitigation strategies.展开更多
The high temperature deformation behavior and microstructures evolution of TC17 alloy in the temperature range of 820°C - 930°C, strain rate range of 0.01 s-1 - 10 s-1 and height direction reduction of 20% -...The high temperature deformation behavior and microstructures evolution of TC17 alloy in the temperature range of 820°C - 930°C, strain rate range of 0.01 s-1 - 10 s-1 and height direction reduction of 20% - 80% have been studied by hot compressing testing. The microstructures of TC17 alloy were observed and analyzed using Olympus/PMG3 optical microscope. The flow stresses were correlated with strain rate and the temperature by the constitutive equation. The results show that the flow stress of TC17 alloy increase quickly with the strain, then decrease with a steady value. The deformation activation energy obtained in the α + β region for TC17 was 407 kJ/mol, and in the β region was 155 kJ/mol. It was also found that the degree of dynamic globularization of α phase increases with increasing strains, increasing temperature and decreasing strain rate in α + β region, the dynamic re-crystallization is obvious at low strain rate and dynamic recovery is obvious at high strain rate in β region.展开更多
The heavy oil reservoirs are currently mainly targeted by thermal enhanced oil recovery technologies,particularly,steam flooding.Steam flooding is carried out by introducing heat into the reservoir to unlock the recov...The heavy oil reservoirs are currently mainly targeted by thermal enhanced oil recovery technologies,particularly,steam flooding.Steam flooding is carried out by introducing heat into the reservoir to unlock the recovery of heavy oil by reducing oil viscosity.Several investigations were carried out to improve oil recovery by steam flooding.Most recently,high steam flooding is reported as an effective approach to improve recovery in high pressure heavy oil reservoirs.The oil recovery from steam flooding is sub-stantially affected by the steam quality and injection temperature.In this study,an attempt was made to look into the integration of parameters,i.e.steam quality and injection temperature upon steam flooding on oil recovery by using a simulation approach via ECLIPSE.The results obtained indicated that high temperature along with the moderate value of steam quality gives the best result regarding oil recovery for steam flooding in an economical way.展开更多
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp...Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.展开更多
This paper studies negative bias temperature instability (NBTI) under alternant and alternating current (AC) stress. Under alternant stress, the degradation smaller than that of single negative stress is obtained....This paper studies negative bias temperature instability (NBTI) under alternant and alternating current (AC) stress. Under alternant stress, the degradation smaller than that of single negative stress is obtained. The smaller degradation is resulted from the recovery of positive stress. There are two reasons for the recovery. One is the passivation of H dangling bonds, and another is the detrapping of charges trapped in the oxide. Under different frequencies of AC stress, the parameters all show regular degradation, and also smaller than that of the direct current stress. The higher the frequency is, the smaller the degradation becomes. As the negative stress time is too small under higher frequency, the deeper defects are hard to be filled in. Therefore, the detrapping of oxide charges is easy to occur under positive bias and the degradation is smaller with higher frequency.展开更多
In the cruise, MR15-04 by R/V MIRAI, the samplings by the neuston net were performed in 23rd November to 14th December 2016 and three species of Halobates (H. germanus, H. micans, H. sp) were used for the temperature ...In the cruise, MR15-04 by R/V MIRAI, the samplings by the neuston net were performed in 23rd November to 14th December 2016 and three species of Halobates (H. germanus, H. micans, H. sp) were used for the temperature tolerance experiments after the collection. The neuston net was towed three times (3 × 15 min) on the starboard side of R/V MIRAI on the water surface with ship speed of 2 knot to water every 3 nights (19:00 - 20:00) at the fixed point in the south-western direction which was located at 50 km from the Sumatra island (4o03'S - 4o05'S, 101o53'E) in the Indonesia. Experiments on cool coma and heat coma were performed on the three species. Seconds for recovery from cool coma and heat coma were also examined on the Halobates in this study. Cool coma temperatures, gap temperature needed (temperature from the adapted temperature) for the cool coma and seconds for the recover from cool coma ranged 13.0oC to 25.0oC, 3.1oC to 16.1oC, 1 second to 4370 seconds, respectively. Heat coma temperature, gap temperature needed for the heat coma, seconds for the recover from heat coma ranged 29.4oC to 43.1oC, 1.9oC to 15.5oC, 2 seconds to 6420 seconds, respectively. The higher temperature of cool coma temperature during the last five days was shown when Madden-Julian Oscillation has passed over the ship, R/V MIRAI than the previous 10 days in the adults of H. germanus collected at the fixed place neat to Sumatra island (One way ANOVA: F-value = 2.314, df = 7, p = 0.028). Adults of un-described species, H. sp collected near to the Sumatra island, showed lower cool coma temperature [Mean ± SD: 15.51 ± 3.76 (9)] than those of H. germanus collected in the same place [16.96 ± 2.57 (191)]. This lower cool coma temperatures shown by this un-described species might be related to that this species should be a “shore” species inhabiting shore water in which many precipitation could cause the decreased surface temperature from 30oC - 31oC into about 25oC. Most of adults which suffered from the cool coma recovered within 20 seconds, whereas adults which suffered heat coma at 38oC and 39oC needed more than 200 seconds for the recovery and many of those which did it at more than 40oC needed more than 1000 second and some ones did not recover at all. All adults who suffered at more than 43oC did not recover at all. There were significant and negative correlation between cool and heat coma temperatures shown by the adults of H. germanus. This correlation might imply a common physiological mechanism for lower and higher temperature tolerances for this species.展开更多
Waste cathode ray tube(CRT)funnel glass(FG)is an important part in the disposal of electrical and electronic waste(e-waste).A novel approach for efficient lead extraction and glass-ceramics synthesized from waste FG t...Waste cathode ray tube(CRT)funnel glass(FG)is an important part in the disposal of electrical and electronic waste(e-waste).A novel approach for efficient lead extraction and glass-ceramics synthesized from waste FG through collaboratively smelting FG with coal fly ash(CFA)is proposed.Glass-ceramics materials with 40 wt%-80 wt%FG additions were produced under sintering temperatures of 900-1000℃.The microstructure and phase composition of the produced glass-ceramics were studied using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The density,water absorption,Vicker hardness,chemical resistance and heavy metal leaching characteristics of the glassceramics were measured.The experimental results indicate that the samples can be crystallized at sintering temperatures of 900-1000℃.An elevated sintering temperature is favorable for enhancing the degree of crystallization,while the crystallization process is inhibited at excessively high temperatures.Increasing FG addition can lead to the transformation of the main crystalline phase from diopside to gehlenite.Well-crystallized crystals were generated in the specimens with 50 wt%-70 wt%FG additions.The samples with 40 wt%,50 wt%,60 wt%,70 wt%,80 wt%FG addition exhibit the optimal chemical and physical properties at 975,925,950,925 and 900℃,respectively.Overall results demonstrate that this study provides a feasible strategy for reliably detoxifying and reusing waste FG and CFA.展开更多
The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the tempera...The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 ℃, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy(TEM) and electron backscattered diffraction(EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 ℃, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed.展开更多
Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value...Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.展开更多
基金financially supported by the Iran Nanotechnology Initiative Council
文摘Recently,nanoparticles have been used along with surfactants for enhancing oil recovery.Although the recent studies show that oil recovery is enhanced using nanoparticle/surfactant solutions,some effective parameters and mechanisms involved in the oil recovery have not yet been investigated.Therefore,the temperature effect on the stability of nanoparticle/surfactant solutions and ultimate oil recovery has been studied in this work,and the optimal concentrations of both SiO2 nanoparticle and surfactant(sodium dodecyl sulfate)have been determined by the Central Composite Design method.In addition,the simultaneous effects of parameters and their interactions have been investigated.Study of the stability of the injected solutions indicates that the nanoparticle concentration is the most important factor affecting the solution stability.The surfactant makes the solution more stable if used in appropriate concentrations below the CMC.According to the micromodel flooding results,the most effective factor for enhancing oil recovery is temperature compared to the nanoparticle and surfactant concentrations.Therefore,in floodings with higher porous medium temperature,the oil viscosity reduction is considerable,and more oil is recovered.In addition,the surfactant concentration plays a more effective role in reservoirs with higher temperatures.In other words,at a surfactant concentration of 250 ppm,the ultimate oil recovery is improved about 20%with a temperature increase of 20°C.However,when the surfactant concentration is equal to 750 ppm,the temperature increase enhances the ultimate oil recovery by only about 7%.Finally,the nanoparticle and surfactant optimum concentrations determined by Design-Expert software were equal to 46 and 159 ppm,respectively.It is worthy to note that obtained results are validated by the confirmation test.
基金the National Nature Science Foundation (Grant No. 51178463)
文摘In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks.
文摘This study describes the coral communities near Qatarand Abu Dhabi (UAE) ten years after the recurrent elevated temperature anomalies of 1996, 1998 and 2002 which resulted in the mass mortality of Acropora spp. Data derived from photo transects taken over a four-year period were analyzed to characterize the existing coral communities, to compare these to the pre- and post-disturbance communities in the adjacent waters near Dubai, and to project the time-frames required for the communities to return to pre-disturbance levels. The massive corals, dominated by Porites spp. and faviids, showed no long-terms affects associated with exposures to the three thermal anomalies;whereas acroporids, comprising 0% - 8% of the live coral cover, were in various stages of recovery. Projections indicated that acroporid regeneration will require 15 - 32 years to achieve the ≥40% pre-disturbance area cover. The existing communities are too small in size and number to be self-seeding;thus, they are dependent upon the recruitment of larvae from remote refuges of colonies that survived the thermal anomalies. Efforts to identify these refuges and to establish appropriate multi-national conservation programs shall become critical to the future survival of acroporids throughout the southeasternArabian Gulfas the projected regeneration times exceed the periods between disturbances, which are expected to occur more frequently as a result of global climate change.
基金We gratefully acknowledge financial supports from the Major Program of National Natural Science Foundation of China(Grant No.42090024)the National Natural Science Foundation of China(Grant No.52004322)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE108).
文摘Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.
文摘The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of proliferating (P) cells in C57BL/6J mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after the administration of pimonidazole followed by TPZ treatment or MTH. Twenty-four hours later, assessment of the responses of Q and total (= P + Q) cells were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. With γ-rays only, the pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using a delayed assay, was more clearly observed in Q cells than total cells. Post-irradiation MTH more remarkably repressed the decrease in radio-sensitivity in the Q cell than the total cells. Post-irradiation TPZ administration produced a large radio-sensitizing effect on both total and Q cells, especially on Q cells. On the other hand, in pimonidazole-unlabeled cell fractions in both total and Q cells, TPZ suppressed the reduction in sensitivity due to delayed assay much more efficiently than MTH, whereas no radio-sensitizing effect was produced. Not only through suppressing the recovery from radiation-induced damage but also through radio-sensitizing effect, post-irradiation TPZ administration is very useful for repressing the increase in the difference in radio-sensitivity due to the delayed assay not only between total and Q tumor cells but also between the pimonidazole-unlabeled and the whole cell fractions within the total and Q tumor cells.
文摘Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles.
基金financially supported by the National Key Basic Research Program of China(No.2014CB643403)the National Science Fund for Distinguished Young Scholars(No.51225401)
基金The support from the China National High Technology Research and Development Program(No.2013AA064301)the National Natural Science Foundation of China(51274210)the Research Start-up Fund of Karamay Campus of China University of Petroleum-Beijing(XQZX20200013)is greatly appreciated.
文摘A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA110903)Jilin Key Scientific and Technological Project(20170204085GX)Jilin Industrial Technology Innovation Strategic Alliance Program(20150309013GX)
文摘In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve.
基金supported by the Shanxi Provincial Key Research and Development Project (No. 20201102002)Science Foundation of China University of Petroleum,Beijing (No. 2462020BJRC007, 2462020YXZZ003)+1 种基金State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (No. PRP/DX-2216)Shell Global Solutions。
文摘Chemical loss such as surfactants and alkalis by adsorption to reservoir rock surface is an important issue in enhanced oil recovery(EOR). Here, we investigated the adsorption behaviors of anionic surfactants and alkalis on silica for the first time as a function of temperature using quartz crystal microbalance with dissipation(QCM-D). The results demonstrated that the temperature dependent critical micelle concentration of alcohol alkoxy sulfate(AAS) surfactant can be quantitatively described by the thermodynamics parameters of micellization, showing a mainly entropy-driven process. AAS adsorption was mediated under varying temperature conditions, by divalent cations for bridging effect, monovalent cations competitive for adsorption sites but not giving cation bridging, pH regulation of deprotonated sites of silica, presence of alkoxy groups in the surfactants, and synergistic effect of surfactant coinjection. The addition of organic alkalis can enhance the overall adsorption of the species with AAS,whereas inorganic alkali of Na_(2)CO_(3) had capability of the sequestration of the divalent ions, whose addition would reduce AAS adsorption. The typical AAS adsorption indicated a non-rigid multilayer,estimated to have between 2 and 5 layers, with a likely compact bilayer followed by disorganized and unstable further layering. The new fundamental understanding about temperature effect on surfactants and alkalis adsorption contributes to optimizing the flooding conditions of chemicals and developing more efficient mitigation strategies.
文摘The high temperature deformation behavior and microstructures evolution of TC17 alloy in the temperature range of 820°C - 930°C, strain rate range of 0.01 s-1 - 10 s-1 and height direction reduction of 20% - 80% have been studied by hot compressing testing. The microstructures of TC17 alloy were observed and analyzed using Olympus/PMG3 optical microscope. The flow stresses were correlated with strain rate and the temperature by the constitutive equation. The results show that the flow stress of TC17 alloy increase quickly with the strain, then decrease with a steady value. The deformation activation energy obtained in the α + β region for TC17 was 407 kJ/mol, and in the β region was 155 kJ/mol. It was also found that the degree of dynamic globularization of α phase increases with increasing strains, increasing temperature and decreasing strain rate in α + β region, the dynamic re-crystallization is obvious at low strain rate and dynamic recovery is obvious at high strain rate in β region.
文摘The heavy oil reservoirs are currently mainly targeted by thermal enhanced oil recovery technologies,particularly,steam flooding.Steam flooding is carried out by introducing heat into the reservoir to unlock the recovery of heavy oil by reducing oil viscosity.Several investigations were carried out to improve oil recovery by steam flooding.Most recently,high steam flooding is reported as an effective approach to improve recovery in high pressure heavy oil reservoirs.The oil recovery from steam flooding is sub-stantially affected by the steam quality and injection temperature.In this study,an attempt was made to look into the integration of parameters,i.e.steam quality and injection temperature upon steam flooding on oil recovery by using a simulation approach via ECLIPSE.The results obtained indicated that high temperature along with the moderate value of steam quality gives the best result regarding oil recovery for steam flooding in an economical way.
文摘Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.
基金Project supported by the National Key Science and Technology Special Project,China (Grant No. 2008ZX01002-002)the Fundamental Research Funds for the Central Universities,China (Grant No. JY10000904009)the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033)
文摘This paper studies negative bias temperature instability (NBTI) under alternant and alternating current (AC) stress. Under alternant stress, the degradation smaller than that of single negative stress is obtained. The smaller degradation is resulted from the recovery of positive stress. There are two reasons for the recovery. One is the passivation of H dangling bonds, and another is the detrapping of charges trapped in the oxide. Under different frequencies of AC stress, the parameters all show regular degradation, and also smaller than that of the direct current stress. The higher the frequency is, the smaller the degradation becomes. As the negative stress time is too small under higher frequency, the deeper defects are hard to be filled in. Therefore, the detrapping of oxide charges is easy to occur under positive bias and the degradation is smaller with higher frequency.
文摘In the cruise, MR15-04 by R/V MIRAI, the samplings by the neuston net were performed in 23rd November to 14th December 2016 and three species of Halobates (H. germanus, H. micans, H. sp) were used for the temperature tolerance experiments after the collection. The neuston net was towed three times (3 × 15 min) on the starboard side of R/V MIRAI on the water surface with ship speed of 2 knot to water every 3 nights (19:00 - 20:00) at the fixed point in the south-western direction which was located at 50 km from the Sumatra island (4o03'S - 4o05'S, 101o53'E) in the Indonesia. Experiments on cool coma and heat coma were performed on the three species. Seconds for recovery from cool coma and heat coma were also examined on the Halobates in this study. Cool coma temperatures, gap temperature needed (temperature from the adapted temperature) for the cool coma and seconds for the recover from cool coma ranged 13.0oC to 25.0oC, 3.1oC to 16.1oC, 1 second to 4370 seconds, respectively. Heat coma temperature, gap temperature needed for the heat coma, seconds for the recover from heat coma ranged 29.4oC to 43.1oC, 1.9oC to 15.5oC, 2 seconds to 6420 seconds, respectively. The higher temperature of cool coma temperature during the last five days was shown when Madden-Julian Oscillation has passed over the ship, R/V MIRAI than the previous 10 days in the adults of H. germanus collected at the fixed place neat to Sumatra island (One way ANOVA: F-value = 2.314, df = 7, p = 0.028). Adults of un-described species, H. sp collected near to the Sumatra island, showed lower cool coma temperature [Mean ± SD: 15.51 ± 3.76 (9)] than those of H. germanus collected in the same place [16.96 ± 2.57 (191)]. This lower cool coma temperatures shown by this un-described species might be related to that this species should be a “shore” species inhabiting shore water in which many precipitation could cause the decreased surface temperature from 30oC - 31oC into about 25oC. Most of adults which suffered from the cool coma recovered within 20 seconds, whereas adults which suffered heat coma at 38oC and 39oC needed more than 200 seconds for the recovery and many of those which did it at more than 40oC needed more than 1000 second and some ones did not recover at all. All adults who suffered at more than 43oC did not recover at all. There were significant and negative correlation between cool and heat coma temperatures shown by the adults of H. germanus. This correlation might imply a common physiological mechanism for lower and higher temperature tolerances for this species.
基金Project(2020GDASYL-20200103101)supported by the GDAS’Project of Science and Technology Development,ChinaProject(2020A1515010729)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2018YFC1902004)supported by the National Key R&D Program of China。
文摘Waste cathode ray tube(CRT)funnel glass(FG)is an important part in the disposal of electrical and electronic waste(e-waste).A novel approach for efficient lead extraction and glass-ceramics synthesized from waste FG through collaboratively smelting FG with coal fly ash(CFA)is proposed.Glass-ceramics materials with 40 wt%-80 wt%FG additions were produced under sintering temperatures of 900-1000℃.The microstructure and phase composition of the produced glass-ceramics were studied using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The density,water absorption,Vicker hardness,chemical resistance and heavy metal leaching characteristics of the glassceramics were measured.The experimental results indicate that the samples can be crystallized at sintering temperatures of 900-1000℃.An elevated sintering temperature is favorable for enhancing the degree of crystallization,while the crystallization process is inhibited at excessively high temperatures.Increasing FG addition can lead to the transformation of the main crystalline phase from diopside to gehlenite.Well-crystallized crystals were generated in the specimens with 50 wt%-70 wt%FG additions.The samples with 40 wt%,50 wt%,60 wt%,70 wt%,80 wt%FG addition exhibit the optimal chemical and physical properties at 975,925,950,925 and 900℃,respectively.Overall results demonstrate that this study provides a feasible strategy for reliably detoxifying and reusing waste FG and CFA.
基金Project(220636)supported by the Postdoctoral Science Foundation of the Central South University,ChinaProject(2016B090931004)supported by the Guangdong Province Science and Research Plan,ChinaProject(51601229)supported by the National Natural Science Foundation of China。
文摘The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 ℃, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy(TEM) and electron backscattered diffraction(EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 ℃, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed.
文摘Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.