期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Practices on rockburst prevention and control in headrace tunnels of Jinping II hydropower station 被引量:9
1
作者 Jimin Wang Xionghui Zeng Jifang Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第3期258-268,共11页
Rockburst problems induced by high in-situ stresses were prominent during construction of the headrace tunnels of Jinping II hydropower station. The rockbursts occurred in various forms, and it is necessary to take pe... Rockburst problems induced by high in-situ stresses were prominent during construction of the headrace tunnels of Jinping II hydropower station. The rockbursts occurred in various forms, and it is necessary to take pertinent measures for integrated prevention and control of rockbursts. In view of the rockburst characteristics during tunnel construction of Jinping II hydropower station, the engineering geological conditions were presented, and the features, mechanisms and forms of rockbursts observed during construction were analyzed in detail. A large number of scientific researches, experiments and applications were conducted. Multiple measures were adopted to prevent and control rockbursts, including the prediction and early warning measures, stress relief by blasting in advance, optimized blasting design and optimized tunnel support in the tunnel sections prone to strong rockbursts. The effectiveness of these prevention and control measures was evaluated. Experiences have been accumulated through a great number of helpful explorations and practices for rockburst prevention and control. A comprehensive rockburst prevention and control system has been gradually established. 展开更多
关键词 long and deep tunnel rockburst prevention and control stress relief by blasting microseismic monitoring
下载PDF
Effects of torpedo blasting on rockburst prevention during deep coal seam mining in the Upper Silesian Coal Basin 被引量:3
2
作者 L. Wojtecki P. Konicek J. Schreiber 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期694-701,共8页
In the Upper Silesian Coal Basin(USCB),coal seams are exploited under progressively more difficult geological and mining conditions(greater depth,higher horizontal stress,more frequent occurrence of competent rock lay... In the Upper Silesian Coal Basin(USCB),coal seams are exploited under progressively more difficult geological and mining conditions(greater depth,higher horizontal stress,more frequent occurrence of competent rock layers,etc.).Mining depth,dislocations and mining remnants in coal seams are the most important factors responsible for the occurrence of rockburst hazards.Longwall mining next to the mining edges of neighbouring coal seams is particularly disadvantageous.The levels of rockburst hazards are minimised via the use of rockburst prevention methods.One active prevention method is torpedo blasting in roof rocks.Torpedo blastings are performed in order to decrease local stress concentrations in rock masses and to fracture the roof rocks to prevent or minimise the impact of high-energy tremors on excavations.The estimation of the effectiveness of torpedo blasting is particularly important when mining is under difficult geological and mining conditions.Torpedo blasting is the main form of active rockburst prevention in the assigned colliery in the Polish part of the USCB.The effectiveness of blasting can be estimated using the seismic effect method,in which the seismic monitoring data and the mass of explosives are taken into consideration.The seismic effect method was developed in the Czech Republic and is always being used in collieries in the Czech part of the coal basin.Now,this method has been widely adopted for our selected colliery in the Polish part of the coal basin.The effectiveness of torpedo blastings in the faces and galleries of the assigned longwall in coal seam 506 has been estimated.The results show that the effectiveness of torpedo blastings for this longwall was significant in light of the seismic effect method,which corresponds to the in situ observations.The seismic effect method is regularly applied to estimating the blasting effectiveness in the selected colliery. 展开更多
关键词 rockburst prevention Torpedo blasting Seismic effect Upper Silesian Coal Basin(USCB)
下载PDF
Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams
3
作者 Xingping Lai Huicong Xu +4 位作者 Pengfei Shan Qinxin Hu Weixi Ding Shangtong Yang Zhongming Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期929-942,共14页
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t... In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams. 展开更多
关键词 steeply inclined coal seam localized deformation mechanism of induced rockburst prevention and control of rockburst
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部