The key problem in physical model tests with highly reflective structures is to prevent the multiple reflections between the reflective structures and the wave maker. An active absorption wave maker system is describe...The key problem in physical model tests with highly reflective structures is to prevent the multiple reflections between the reflective structures and the wave maker. An active absorption wave maker system is described and the representative frequency method for irregular waves is proposed in this paper. Physical model tests are conducted to verify the effectiveness of the proposed method.展开更多
The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented b...The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented by prescribing velocity reference to linear wave-maker theory. The principle of which is that the numerical wave-maker is designed to move in a way that generates the required incident wave and cancels out any reflected wave that reach it at the same time. On the right side of the channel, the open boundary is set to permit incident waves to be transmitted freely. The parametric studies have been carried out at a range of ratios of water depth to wave length d/ L from 0.124 to 0.219, with wave height in the front of paddle/water depth ratio (H0 / d) from 0.1 to 0.3. Wave height, wave pressure distribution along the channel and velocity field are obtained for both open boundary condition and reflective boundary condition at the other end of the channel. For a reflective case, it is shown that the absorbing wave-maker is very effective in canceling out the reflected wave that reaches the numerical paddle and highly repeatable waves can be generated.展开更多
A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boun...A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.展开更多
The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge and the wall of the tank.In this study,we analyze the influence of this gap on the wave mak...The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge and the wall of the tank.In this study,we analyze the influence of this gap on the wave making performance of the plunger using two-dimensional(2 D)CFD calculations for a range of nearly linear wave conditions and compare the results with both experimental measurements and linear potential flow theory.Three wedge-shaped profiles,all with the same submerged volume,are considered.Moreover,the generated waves are compared with the predictions of linear potential flow theory.The calculations are made using the commercial ANSYS FLUENT finite-volume code with dynamic meshes to solve the Navier-Stokes equations and the volume of fluid scheme to capture the air-water interface.Furthermore,the linear potential flow solution of Wu(J Hydraul Res 26:481-493,1988)is extended to consider an arbitrary profile and serve as a reference solution.The amplitude ratios of the generated waves predicted by the CFD calculations compare well with the predictions of linear potential flow theory for a simple wedge,indicating that viscous effects do not influence this ratio for small-amplitude motions in 2 D.By contrast,significant higher harmonic components are produced by larger amplitude motions.Also,the simple wedge is found to produce the smallest spurious higher harmonic content in the far-field wave.展开更多
The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rot...The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range.展开更多
Real waves are multidirectional waves. In the present study, the calculation method for the wave maker driving signals for generating multidirectional wave groups in physical wave basin is proposed. Its validity is fi...Real waves are multidirectional waves. In the present study, the calculation method for the wave maker driving signals for generating multidirectional wave groups in physical wave basin is proposed. Its validity is first confirmed by a numerical model for which the incident boundary condition is determined by use of the proposed method. Then, the physical simulation of multidirectional wave groups is performed in laboratory wave basin. The experimental results show that multidirectional waves with expected wave groupiness, which includes not only its group height but also its group length, can be satisfactorily zenerated at the soecified oosition in the tphvsical wave basin.展开更多
Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic...Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle.展开更多
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water ...The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of numerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler-lagrange particles Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation. The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.展开更多
Wave energy spectrum in shallow water can be studied in wind wave channel in combination with irregular wave- maker. Fetch length is successfully extended and by 'Relay' method the corresponding spectrum patte...Wave energy spectrum in shallow water can be studied in wind wave channel in combination with irregular wave- maker. Fetch length is successfully extended and by 'Relay' method the corresponding spectrum pattern and the wind velocity scale are obtained.展开更多
In this study,the water entry of wedges in regular waves is numerically investigated by a two-dimensional in-house numerical code.The numerical model based on the viscous Navier−Stokes(N−S)equations employs a high-ord...In this study,the water entry of wedges in regular waves is numerically investigated by a two-dimensional in-house numerical code.The numerical model based on the viscous Navier−Stokes(N−S)equations employs a high-order different method—the constrained interpolation profile(CIP)method to discretize the convection term.A Volume of Fluid(VOF)-type method,the tangent of hyperbola for interface capturing/slope weighting(THINC/SW)is employed to capture the free surface/interface,and an immersed boundary method is adopted to treat the motion of wedges.The momentum source function derived from the Boussinesq equation is applied as an internal wavemaker to generate regular waves.The accuracy of the numerical model is validated in comparison with experimental results in the literature.The results of water entry in waves are provided in terms of the impact force of wedge,velocity and pressure distributions of fluid.Considerable attention is paid to the effects of wave parameters and the position of wedge impacting the water surface.It is found that the existence of waves significantly influences the velocity and pressure field of fluid and impact force on the wedges.展开更多
A numerical approach was performed to predict the propagation and transformation of nonlinear water waves. A numerical wave flume was developed based on the non-periodic high-order spectral (HOS) method. The flume was...A numerical approach was performed to predict the propagation and transformation of nonlinear water waves. A numerical wave flume was developed based on the non-periodic high-order spectral (HOS) method. The flume was applied to analyze the effect of wave steepness and wavelength on the propagation of nonlinear waves. The results show that for waves of low steepness, the wave profile and the wave energy spectrum are stable, and that the propagation can be predicted by the linear wave theory. For waves of moderate steepness and steep waves, the effects associated with the interactions between waves in a wave group become significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position.展开更多
A middle size experiental wave generator has been implemented is the Ujikawa Open Laboratory, Disaster Prevention Research Institute, Kyoto University. The generator is composed of a pistontype wave maker, a head stra...A middle size experiental wave generator has been implemented is the Ujikawa Open Laboratory, Disaster Prevention Research Institute, Kyoto University. The generator is composed of a pistontype wave maker, a head strage water tank and a current generator to mainly reproduce long waves like tsunami and storm surge. The paper desribes several experimental series to predict the applicability of the generator to model tests. The three operating sysemes are capable to be controlled in one operating sysytem and start time is contorolled separately according with the target tsunami and storm surge profiles. A sharp tsunami profile is reproduced in adjusting the start timing of piston type wave maker and opening gates of head storage tunk. Any type of tsunami waves are reproduced in the generator and it becomes a storong tool to predict the effective of"resiliency" of hardwares.展开更多
The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled m...The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.展开更多
基金TheworkwasfinanciallysupportedbytheNationalNaturalScienceFoundationofChina(GrantNo .5 990 90 0 1)andFokYingTungEducationFoundation (No .810 68)
文摘The key problem in physical model tests with highly reflective structures is to prevent the multiple reflections between the reflective structures and the wave maker. An active absorption wave maker system is described and the representative frequency method for irregular waves is proposed in this paper. Physical model tests are conducted to verify the effectiveness of the proposed method.
文摘The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented by prescribing velocity reference to linear wave-maker theory. The principle of which is that the numerical wave-maker is designed to move in a way that generates the required incident wave and cancels out any reflected wave that reach it at the same time. On the right side of the channel, the open boundary is set to permit incident waves to be transmitted freely. The parametric studies have been carried out at a range of ratios of water depth to wave length d/ L from 0.124 to 0.219, with wave height in the front of paddle/water depth ratio (H0 / d) from 0.1 to 0.3. Wave height, wave pressure distribution along the channel and velocity field are obtained for both open boundary condition and reflective boundary condition at the other end of the channel. For a reflective case, it is shown that the absorbing wave-maker is very effective in canceling out the reflected wave that reaches the numerical paddle and highly repeatable waves can be generated.
基金supported by the‘New Century Outstanding Talent’Scheme of the Ministry of Education of China(Grant No.NCET-07-0135)
文摘A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.
文摘The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge and the wall of the tank.In this study,we analyze the influence of this gap on the wave making performance of the plunger using two-dimensional(2 D)CFD calculations for a range of nearly linear wave conditions and compare the results with both experimental measurements and linear potential flow theory.Three wedge-shaped profiles,all with the same submerged volume,are considered.Moreover,the generated waves are compared with the predictions of linear potential flow theory.The calculations are made using the commercial ANSYS FLUENT finite-volume code with dynamic meshes to solve the Navier-Stokes equations and the volume of fluid scheme to capture the air-water interface.Furthermore,the linear potential flow solution of Wu(J Hydraul Res 26:481-493,1988)is extended to consider an arbitrary profile and serve as a reference solution.The amplitude ratios of the generated waves predicted by the CFD calculations compare well with the predictions of linear potential flow theory for a simple wedge,indicating that viscous effects do not influence this ratio for small-amplitude motions in 2 D.By contrast,significant higher harmonic components are produced by larger amplitude motions.Also,the simple wedge is found to produce the smallest spurious higher harmonic content in the far-field wave.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605431,51705456)Ningbo Municipal Natural Science Foundation of China(Grant No.2019A610162)Ningbo Major Scientific and Technological Projects(Grant No.2017C110005).
文摘The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079023 and 50921001)the Program for New Century Excellent Talents in University (Grant No. NCET-05-0282)
文摘Real waves are multidirectional waves. In the present study, the calculation method for the wave maker driving signals for generating multidirectional wave groups in physical wave basin is proposed. Its validity is first confirmed by a numerical model for which the incident boundary condition is determined by use of the proposed method. Then, the physical simulation of multidirectional wave groups is performed in laboratory wave basin. The experimental results show that multidirectional waves with expected wave groupiness, which includes not only its group height but also its group length, can be satisfactorily zenerated at the soecified oosition in the tphvsical wave basin.
文摘Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle.
文摘The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of numerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler-lagrange particles Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation. The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
文摘Wave energy spectrum in shallow water can be studied in wind wave channel in combination with irregular wave- maker. Fetch length is successfully extended and by 'Relay' method the corresponding spectrum pattern and the wind velocity scale are obtained.
基金supported by Foundation of Zhejiang Institute of Hydraulic and Estuary(Grant No.Haian A18003)the Science and Technology Plan Projects of Zhejiang water(Grant No.RB1803)+1 种基金Zhejiang Provincial Natural Science Foundation(Grant Nos.LQ19E090004 and LQ16E090004)the Science and Technology Plan Projects of Zhejiang Province(Grant No.2018F10026)and Tang Scholar.
文摘In this study,the water entry of wedges in regular waves is numerically investigated by a two-dimensional in-house numerical code.The numerical model based on the viscous Navier−Stokes(N−S)equations employs a high-order different method—the constrained interpolation profile(CIP)method to discretize the convection term.A Volume of Fluid(VOF)-type method,the tangent of hyperbola for interface capturing/slope weighting(THINC/SW)is employed to capture the free surface/interface,and an immersed boundary method is adopted to treat the motion of wedges.The momentum source function derived from the Boussinesq equation is applied as an internal wavemaker to generate regular waves.The accuracy of the numerical model is validated in comparison with experimental results in the literature.The results of water entry in waves are provided in terms of the impact force of wedge,velocity and pressure distributions of fluid.Considerable attention is paid to the effects of wave parameters and the position of wedge impacting the water surface.It is found that the existence of waves significantly influences the velocity and pressure field of fluid and impact force on the wedges.
文摘A numerical approach was performed to predict the propagation and transformation of nonlinear water waves. A numerical wave flume was developed based on the non-periodic high-order spectral (HOS) method. The flume was applied to analyze the effect of wave steepness and wavelength on the propagation of nonlinear waves. The results show that for waves of low steepness, the wave profile and the wave energy spectrum are stable, and that the propagation can be predicted by the linear wave theory. For waves of moderate steepness and steep waves, the effects associated with the interactions between waves in a wave group become significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position.
文摘A middle size experiental wave generator has been implemented is the Ujikawa Open Laboratory, Disaster Prevention Research Institute, Kyoto University. The generator is composed of a pistontype wave maker, a head strage water tank and a current generator to mainly reproduce long waves like tsunami and storm surge. The paper desribes several experimental series to predict the applicability of the generator to model tests. The three operating sysemes are capable to be controlled in one operating sysytem and start time is contorolled separately according with the target tsunami and storm surge profiles. A sharp tsunami profile is reproduced in adjusting the start timing of piston type wave maker and opening gates of head storage tunk. Any type of tsunami waves are reproduced in the generator and it becomes a storong tool to predict the effective of"resiliency" of hardwares.
基金supported by the National Natural Science Foundation of China(41176073)
文摘The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.