期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
The properties of Sn-Zn-Al-La fusible alloy for mitigation devices of solid propellant rocket motors 被引量:1
1
作者 Zi-ting Wei Nan Li +5 位作者 Jian-xin Nie Jia-hao Liang Xue-yong Guo Shi Yan Tao Zhang Qing-jie Jiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1688-1696,共9页
The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning el... The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors. 展开更多
关键词 Mitigation devices Solid propellant rocket motors Sn9Zn Al element La element Hydrostatic pressure at high-temperature test
下载PDF
China's Civil Solid Rocket Motors
2
作者 Huang Jianding 《Aerospace China》 1996年第2期7-8,共2页
China develops solid fuelrocket technology completely de-pending on its own strength.Since the late 1950s,variouskinds of solid rocket engines de-veloped by the 4th Academy ofChina Aerospace Corporation(CASC)have been... China develops solid fuelrocket technology completely de-pending on its own strength.Since the late 1950s,variouskinds of solid rocket engines de-veloped by the 4th Academy ofChina Aerospace Corporation(CASC)have been used intomany positioning and recoveringtests of various satellites and over100 flight tests of various missileswith a 100% successful rate.InOctober,1982,especially,Chinasuccessfully launched a solid fuelrocket from a submarine underwater,which reflected China’shigh level in this field.China’scivilian solid rocket engines are asfollows: 展开更多
关键词 CASC OVER China’s Civil Solid rocket motors LENGTH DFH
下载PDF
Solid Rocket Motors for Launch Escape Tower Provide Safety to Astronauts
3
作者 Zong He 《Aerospace China》 2012年第3期6-7,共2页
Compared with other ordinary launch vehicles, the LM-2F launch vehicle has two special systems, the fault detection processing system and launch escape system, because it is used for manned spaceflight missions. Durin... Compared with other ordinary launch vehicles, the LM-2F launch vehicle has two special systems, the fault detection processing system and launch escape system, because it is used for manned spaceflight missions. During the 10 flight missions carried out by LM-2F, only the 展开更多
关键词 Solid rocket motors for Launch Escape Tower Provide Safety to Astronauts HIGH
下载PDF
Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors 被引量:5
4
作者 Zhang Xiaoying Chen Huandong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期924-933,共10页
This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios r... This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE) considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM) to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2-6 mu m. Conditions at wavelengths 2.7 mu m and 4.3 mu m are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2-2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume's high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2 center dot Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7-3.0 lm and 4.2-4.6 lm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. 展开更多
关键词 Infrared radiation PLUME Reduced-scale model SIMILARITY Solid rocket motor
原文传递
Numerical simulation of multi-phase combustion flow in solid rocket motors with metalized propellant 被引量:4
5
作者 SHAFQAT Wahab 《航空动力学报》 EI CAS CSCD 北大核心 2009年第7期1654-1660,共7页
Multi-phase flowfield simulation has been performed on solid rocket motor and effect of multi-phases on the performance prediction of the solid rocket motor(SRM) is investigation.During the combustion of aluminized pr... Multi-phase flowfield simulation has been performed on solid rocket motor and effect of multi-phases on the performance prediction of the solid rocket motor(SRM) is investigation.During the combustion of aluminized propellant,the aluminum particles in the propellant melt and formliquid aluminum at the burning propellant surface.So the flow within the rocket motor is multi phase or two phase because it contains droplets and smoke particles of Al2O3.Flowsi mulations have been performed on a large scale motor,to observe the effect of the flowfield onthe chamber and nozzle as well.Uniform particles diameters and Rosin-Rammler diameter distribution method that is based on the assumption that an exponential relationship exists betweenthe droplet diameter,dand mass fraction of droplets with diameter greater thandhave been used for the si mulation of different distribution of Al2O3 droplets present in SRM.Particles sizes in the range of 1-100μm are used,as being the most common droplets.In this approachthe complete range of particle sizes is dividedinto a set of discrete size ranges,eachto be defined by single streamthat is part of the group.Roe scheme-flux differencing splitting based on approxi mate Riemann problem has been used to si mulate the effects of the multi-phase flowfeild.This is second order upwind scheme in which flux differencing splitting method is employed.To cater for the turbulence effect,Spalart-All maras model has been used.The results obtained show the great sensitivity of this diameters distribution and particles concentrations to the SRMflowdynamics,primarily at the motor chamber and nozzle exit.The results are shown with various sizes of the particles concentrations and geometrical configurations including models for SRM and nozzle.The analysis also provides effect of multi-phase on performance prediction of solid rocket motor. 展开更多
关键词 solid rocket motor nozzle multiphase flow Rosin-Rammler diameter distribution method Roe FDS (flux differencing splitting) performance prediction
原文传递
Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing 被引量:3
6
作者 Zhu Hao Tian Hui Cai Guobiao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期719-725,共7页
Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters.This paper presents a hybrid uncertainty-based design o... Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters.This paper presents a hybrid uncertainty-based design optimization(UDO) method developed from probability theory and interval theory.Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory,while the others are defined as interval variables with interval theory.Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses.Three design optimization strategies,including deterministic design optimization(DDO),probabilistic UDO and hybrid UDO,are applied to the conceptual design of a hybrid rocket motor(HRM) used as the ascent propulsion system in Apollo lunar module.By comparison,the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems. 展开更多
关键词 Hybrid rocket motor Hybrid uncertainty-based design optimization Manned lunar landing Uncertainty analysis
原文传递
Measurement of alumina film induced ablation of internal insulator in solid rocket environment
7
作者 Ji-Yeul Bae In Sik Hwang Yoongoo Kang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期181-192,共12页
This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet conf... This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet configuration to form an alumina film on the sample and to encourage the lateral movement of the film by a high-speed wall jet.Fifteen static fire tests of the test SRM were conducted with six different jet velocities(V_(jet)=100 m/s,150 m/s,200 m/s,268 m/s,330 m/s,and 450 m/s)that indirectly affected the velocity of the wall jet and the deposition rate of alumina droplets.The ablation velocity was deduced from the difference in the sample thickness after a test using a coordinate measuring machine.The droplet deposition mass flux and wall jet velocity were obtained via two-phase flow simulation with the same jet velocity and effective pressure.As a result,the characteristics of alumina-induced ablation and the changes in ablation with jet velocities were obtained.The area within0.8×jet diameter was focused upon,where the ratio of ablation velocity to incoming alumina mass was constant for each jet velocity,and showed a similarity in jet structure.When the ablation velocity was increased from 2.05 to 9.98 mm/s with increasing jet velocity,the ratio of the ablation velocity and alumina mass flux decreased from 1.07×10^(-4)to 0.49×10^(-4)m^(3)/kg as Al_(2)O_(3)-C reactions became less efficient with a reduced residence time of the film.Because the decrease in residence time by the wall jet is more pronounced for slow reactions involved in Al_(2)O_(3)-C reactions,fast reactions in Al_(2)O_(3)-C reactions are less affected and result in a convergence of the volumetric rate of ablation per unit mass of alumina. 展开更多
关键词 Internal insulation Solid rocket motor Ablation ALUMINA
下载PDF
Study on Instable Combustion of Solid Rocket Motor with Finocyl Grain 被引量:4
8
作者 胡大宁 何国强 +1 位作者 刘佩进 王占利 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第1期24-28,共5页
The instable combustion or oscillation combustion which occurs in three high capacity solid rocket motors using high energy composite propellant with finocyl grain is studied. The reasons of the acoustic combustion in... The instable combustion or oscillation combustion which occurs in three high capacity solid rocket motors using high energy composite propellant with finocyl grain is studied. The reasons of the acoustic combustion instability are also discussed. Three engineering methods that can eliminate combustion instability are proposed and discussed. The study shows that the combustion instability mainly depends on the propellant grain shape and nozzle structure. Some measures to reduce the acoustic energy and mass generation rate of combustion gas can be adopted. The test results indicate that the modified rocket motors can significantly eliminate the instable combustion and improve the motor internal ballistic performance. 展开更多
关键词 propulsion system of aviation & aerospace solid rocket motor finocyl grain combustion instability
下载PDF
Research on the Initial Ignition of the Underwater Launching Solid Rocket Motor 被引量:1
9
作者 马艳丽 姜毅 +1 位作者 郝继光 刘伯伟 《Journal of Beijing Institute of Technology》 EI CAS 2010年第4期422-426,共5页
The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was res... The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was researched and the energy transfer was added to the energy equations.The flow field and the vaporization were calculated coupled.The initial ignition process of the underwater solid rocket motor is obtained and the vaporization influence to the underwater launching is analyzed.The "neck","inverted jet" and "eruption" phenomenon of the bubble are observed.The bubble increases more rapidly because the steam mass added to the fuel.The temperature is lower considering the vaporization because the steam enthalpy is lower than the fuel enthalpy and the flow field of the initial ignition of the underwater-launching solid rocket motor is accordant well to the reference. 展开更多
关键词 solid rocket motor underwater launching multiple phases flow VAPORIZATION coupled method
下载PDF
Influence of Solid Rocket Motor Slag on the Space Debris Environment 被引量:1
10
作者 Bao-Jun Pang Ke-Ke Peng +2 位作者 Wei-Ke Xiao Fang-Fei Ju Dong-Fang Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第6期15-20,共6页
The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been... The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been also estimated via observations of sub-orbital tail-off events. We achieve slag initial data based on MASTER slag model and SRM historical launch data,and propagate slag long-term orbital evolution taking into account the zonal harmonics J2,atmospheric drag,solar radiation pressure and luni-solar attraction to discuss the slag size distribution and orbital characteristics. Finally,future slag debris environment is evaluated based on two different launch rate assumptions. The result shows that current launch frequency will make the slag population sustain growth and the population will not decrease at once even if there are no more launches in the future. 展开更多
关键词 solid rocket motor SLAG space debris orbital distribution spatial density
下载PDF
Laminar and Turbulent Characteristics of the Acoustic/Fluid Dynamics Interactions in a Slender Simulated Solid Rocket Motor Chamber
11
作者 Abdelkarim Hegab Faisal Albatati Mohammed Algarni 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期437-467,共31页
In this paper,analytical,computational,and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injecti... In this paper,analytical,computational,and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injection.Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with associated shear stresses.These stresses may cause scouring and,in turn,enhance the heat rate and erosional burning of solid propellant in a real rocket chamber.In this modelling,the unsteady propellant gasification is mimicked by steady-state flow disturbed by end-wall oscillations.The analytical approach is formulated using an asymptotic technique to reduce the full governing equations.The equations that arise from the analysis possess wave properties are solved in an initial-boundary value sense.The numerical study is performed by solving the parabolized Navier–Stokes equations for the DNS simulation and unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system with the turbulence modelling.The v2-f turbulence model has been implemented.The results show that an unexpectedly large amplitude of unsteady vorticity is generated at the injection side-wall of the chamber and is then penetrated downstream by the bulk motion of the internal flow.These stresses may cause a scouring effect and large transient heat transfer on the combustion surface.A comparison between the analytical,computational,and experimental results is performed. 展开更多
关键词 Acoustic waves solid rocket motor chamber sidewall injection perturbation analysis acoustic instability turbulence models manuscript
下载PDF
Center of rotation estimation for rocket nozzle by infrared reflective makers and image sequences
12
作者 张灵飞 陈刚 +1 位作者 叶东 车仁生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期56-60,共5页
The determination of an accurate center of rotation of rocket motor nozzle or other object to be measured is of great interest across a wide range of applications,such as rocket,missile,robotics,industry,spaceflight,a... The determination of an accurate center of rotation of rocket motor nozzle or other object to be measured is of great interest across a wide range of applications,such as rocket,missile,robotics,industry,spaceflight,aviation and human motion analysis fields,particularly for clinical gait analysis.A new approach was proposed to estimate the moving objects' instantaneous center of rotation and other motion parameters.The new method assumes that the two segment of object to be measured are rigid body which rotates around a center of rotation between each other relatively.The center of rotation varies with time in the global coordinate system but is fixed in the local coordinate system attached to each segment.The models of rocket motor nozzle and its movement were established.The arbitrary moving object's corresponding to motion equations were deduced,and the least square closed-form solutions of the object's motion parameters were figured out.It is assumed that the two high speed CCD cameras mounted on the 750 nm infrared(IR) filter are synchronized and calibrated in advance.The virtual simulation experiment using 3D coordinates of markers was conducted by synchronized stereo image sequences based on 6-DOF motion platform and the experimental results prove the feasibility of our algorithm.The test results show that the precision of x,y,z component on center of rotation is up to 0.14 mm,0.13 mm,0.15 mm. 展开更多
关键词 rocket motor nozzle center of rotation stereo vision image sequence IR reflective marker high speed CCD camera
下载PDF
On the Transient Numerical Simulation of Solid Rocket Motor by Coupling Quasi One⁃Dimension Internal Flow with Three⁃Dimension Propellant Grain Burnback
13
作者 Juan Duan Yongliang Xiong Ningdong Hu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第5期15-27,共13页
The quasi one⁃dimension compressible flowfield coupled to the three⁃dimension propellant grain regression solved by the level⁃set method was used to simulate the transient internal ballistics of solid rocket motor.One... The quasi one⁃dimension compressible flowfield coupled to the three⁃dimension propellant grain regression solved by the level⁃set method was used to simulate the transient internal ballistics of solid rocket motor.One⁃dimension flowfield instead of three⁃dimension can save computational cost on the premise of calculation accuracy because the radial and azimuthal variations parameters have little contribution to the internal flowfield.The grain regression in real⁃time could provide accurate geometrical information for simulation.A combination of flowfluid solver and grain regression can reappear in a relatively real internal ballistic flowfield,so it is good for further studying the instability of solid rocket motor.For level⁃set equations,the total variation⁃diminishing second⁃order Runge⁃Kutta method for temporal derivatives and a fifth⁃order weighted⁃essentially⁃non⁃oscillatory scheme for spatial derivatives were used.The total variation⁃diminishing MacCormack method was used to discrete the Euler equations in flowfield solver.Two modules of this code were tested in this study:one is the burning rate module and the other is the nozzle erosion module.Results show that the burning rate influenced the solid rocket motor efficiency,and the velocity profile in the chamber was affected by the nozzle shape,and the nozzle erosion could influence the head⁃end pressure spike. 展开更多
关键词 transient compressible solver internal ballistics simulation level⁃set method solid rocket motor
下载PDF
Experimental and Theoretical Research Review of Hybrid Rocket Motor Techniques and Applications
14
作者 Entidhar A. Alkuam Wissam M. Alobaidi 《Advances in Aerospace Science and Technology》 2016年第3期71-82,共12页
A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing ... A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing agent is liquid (often hydrogen peroxide or liquid oxygen). These components are combined in the fuel chamber which doubles as the combustion chamber for the hybrid motor. This review looks at the advances in techniques that have taken place in the development of these motors since 1995. Methods of testing the thrust from rocket motors and of measuring the rocket plume spectroscopically for combustion reaction products have been developed. These assessments allow researchers to more completely understand the effects of additives and physical changes in design, in terms of regression rates and thrust developed. Hybrid rocket motors have been used or tested in many areas of rocketry, including tactical rockets and large launch vehicles. Several additives have shown significant improvements in regression rates and thrust, including Guanidinium azotetrazolate (GAT), and various Aluminum alloys. The most recent discoveries have come from research into nano-particle additives. The nano-particles have been shown to provide enhancements to many parameters of hybrid rocket function, and research into specific areas continues in the sub-field of nano-additives for fuel grains. 展开更多
关键词 Hybrid rocket Motor Sounding rockets Tactical rockets Space Engines Thrust Augmentation Large Launch Boosters Fuel Additives Regression Rate
下载PDF
Numerical study on combustion efficiency of aluminum particles in solid rocket motor 被引量:1
15
作者 Junlong WANG Ningfei WANG +4 位作者 Xiangrui ZOU Wei DONG Yintao ZHOU Dingjiang XIE Baolu SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期66-77,共12页
The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hi... The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by experiments and numerical simulations, providing a guideline for engine performance improvement. As an input of simulation, the initial agglomerate size was measured by a high pressure system. Meanwhile, the size distribution of the particles in plume was measured by ground firing test to validate the numerical model. Then, a two-phase flow model coupling combustion of micro aluminum particle was developed, by which the detailed effects of particle size, detaching position and nozzle convergent section structure on aluminum combustion efficiency were explored. The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size,while the maximum temperature increases slightly. In the tested motors, the aluminum particle burns completely as its diameter is smaller than 50 μm, and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size. As the diameter approaches to 75 μm, the combustion efficiency becomes more sensitive to particle size. The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface, where the particle combustion efficiency decreases during approaching the convergent section. Furthermore, the combustion efficiency decreases slightly with increasing nozzle convergent section angle. And theoretically it is feasible to improve combustion efficiency of aluminum particles by designing the convergent profile of nozzle. 展开更多
关键词 ALUMINUM Combustion efficiency Eulerian-Lagrangian Particle size Solid rocket motor
原文传递
一种有效评估推进剂药柱老化的方法(英文)
16
作者 MUHAMMAD Majd-ud-din 吕国志 任克亮 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期59-64,共6页
Physical properties of composite propellants used in solid rocket motors change significantly with age. To predict the margin of safety and to reevaluate the remaining service life, the structural integrity analysis o... Physical properties of composite propellants used in solid rocket motors change significantly with age. To predict the margin of safety and to reevaluate the remaining service life, the structural integrity analysis of solid propellant grains of aged rocket motors is performed at various stages of their life span. To have the reliable results from these analyses, it is mandatory to use the current physical properties of the propellant at the time of analysis. Change in physical properties due to aging is more significant at exposed surfaces. Traditional methods of assessing current physical properties may not truly rep resent the properties of the batch. The paper presents a novel technique to measure the stress strain response at the exposed surface of propellant grain using a miniature-testing device. This specially designed device is able to measure the stress response while the propellant surface is compressed at a constant rate. This measured stress strain behavior is then co-related with the physical properties measured by routine tensile tests of the similar type of propellant which is aged artificially. It is observed that there exists an excellent correlation between the measured stress values by the sensor and physical properties measured by uni-axial tensile test. This nondestructive technique provides properties of propellant grains of all the motors in the batch comprehensively. The technique is safe as well as economical as compared to the traditional methods. 展开更多
关键词 case bonded grain composite solid propellant service life solid rocket motor structural integrity
下载PDF
Ablation characteristics of insulator under high-temperature gas dual-pulse erosion
17
作者 Yang Liu Xiao-cong Li +1 位作者 Peng-fei Zhu Kun Xi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1875-1885,共11页
This study numerically simulated and investigated the flow field characteristics of a typical dual-pulse solid rocket motor with a soft pulse separation device through thermal insulation ablation under high-temperatur... This study numerically simulated and investigated the flow field characteristics of a typical dual-pulse solid rocket motor with a soft pulse separation device through thermal insulation ablation under high-temperature dual-pulse erosion.The ablation rate of ethylene-propylene-diene monomer(EPDM)insulator was measured after the experiment.Experimental results were analyzed through scanning electron microscopy and microcomputed tomography.The ablation mechanism of the EPDM insulator under the operation conditions of a dual-pulse solid rocket motor was evaluated by analyzing the results.The results reveal that the internal flow field of the motor with a soft pulse separation device is uniform.The original charred layer existing on the EPDM insulator surface in the first pulse combustor is the decisive factor affecting the final ablation rate of the dual-pulse motor during the second pulse operation,and the ablation characteristic region is easily formed with the exfoliation of the charred layer.The ablation rate difference of the insulator increases with gas velocity. 展开更多
关键词 Dual-pulse solid rocket motor High temperature gas Ablation PSD Charred layer
下载PDF
Burning Regression Analysis for 3D Grain Configurations 被引量:1
18
作者 ALI Kamran LIANG Guozhu MUHAMMAD Zeeshan Siddiqui 《Computer Aided Drafting,Design and Manufacturing》 2010年第1期39-45,共7页
Grain design is essentially filling a prescribed volume (chamber case) with a certain shape of propellant so as to ensure mission requirements. An infinite number of possibilities exist, covering from two dimensiona... Grain design is essentially filling a prescribed volume (chamber case) with a certain shape of propellant so as to ensure mission requirements. An infinite number of possibilities exist, covering from two dimensional to three dimensional grain designs. Accurate calculation of grain geometrical properties plays a vital role in performance prediction. In this paper a methodology has been presented for designing 3D grain configuration for Solid Rocket Motors (SRMs). The design process involves parametric modeling of the geometry in CAD software through dynamic variables that define the complex configuration. Initial geometry is defined in the form of a surface which defines the grain configuration. Grain bum back is achieved by making new surfaces at each web increment and calculating geometrical properties at each step. Geometrical calculations are based on volume and change in volume calculations. Models for Axisymetric and Finocyl grain configuration have been developed. Equilibrium pressure method is used to calculate the internal ballistics. The procedure adopted can be applied to any complex geometry in a relatively simple way for preliminary designing of grain configuration. 展开更多
关键词 internal ballistics grain burning regression solid rocket motor 3D grains
下载PDF
Numerical analysis on combustion characteristics of hybrid rocket motor with star-tube segmented grain
19
作者 Chengen LI Zongwei WANG +4 位作者 Jin YANG Jinpeng JIANG Fan GONG Zhu LIU Yu SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期102-112,共11页
A method of star-tube combined segmented grain is proposed to improve the combustion performance of hybrid rocket motor.The star-tube combined segmented grain consists of a single-port star part and a single-port tube... A method of star-tube combined segmented grain is proposed to improve the combustion performance of hybrid rocket motor.The star-tube combined segmented grain consists of a single-port star part and a single-port tube part.A mid-chamber forms between the fore-grain and the aft-grain for better mixing effect.The single-port feature gives hybrid rocket motor several advantages,such as simple structure,high reliability,and variable combinations.This paper is mainly aimed at studying the combustion characteristics of hybrid rocket motor with star-tube segmented grain through three-dimensional steady simulations.Combustion performance of the motors with different segmented grain combinations,including fore-tube/aft-tube,fore-tube/aftstar,fore-star/aft-star and fore-star/aft-tube,is contrastively analyzed.The motor in this paper adopts polyethylene and 90%hydrogen peroxide as the propellants.Simulations reveal that segmented grain with different-type grain combinations could greatly change the flow field in the second half of the combustion chamber.Transformation of the flow field is beneficial to the mixing between the fuel and the oxidizer,and it could increase the fuel regression rate and the combustion efficiency.The turbulence effect of tube aft-grain is better than that of star aft-grain.Among the four segmented grain combinations,the combination of star fore-grain and tube aft-grain is the preferred method with optimal overall performance.This grain configuration could increase the regression rate of tube aft-grain to surpass that of star aft-grain in other combinations.Besides,hybrid rocket motor with this grain configuration achieves the highest combustion efficiency. 展开更多
关键词 Combustion performance Flow fields Fluid-solid coulping Hybrid rocket motor Star-tube segmented grain
原文传递
固体颗粒对喷流流场及底部热环境影响规律研究
20
作者 ZHANG Liang YAN Li +3 位作者 SUN Peijie YANG Fan WANG Heping REN Jie 《Aerospace China》 2022年第2期16-24,共9页
Compared with using liquid rocket engines,there are a lot of high-temperature solid particles in the solid-liquid bundled rocket,which make the rocket base thermal environment worse.In order to study the influence of ... Compared with using liquid rocket engines,there are a lot of high-temperature solid particles in the solid-liquid bundled rocket,which make the rocket base thermal environment worse.In order to study the influence of high-temperature solid particles on the base thermal environment,firstly,the effect of particle diameter on the jet distribution and the thermal environment in a single solid motor jet was analyzed using a numerical simulation method,and the results were compared with those of a ground test.Further,the effects of high-temperature solid particles on the jet and the thermal environment of the solid-liquid bundled rocket were analyzed and compared with flight data.The results show that high-temperature solid particles can increase the jet temperature and reduce the jet velocity.The larger the particle diameter,the greater the impact on the jet core temperature.The role of high-temperature solid particles cannot be ignored in the study of the base thermal environment. 展开更多
关键词 solid rocket motor thermal environment two-phase flow solid-liquid bundled rocket
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部