期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems 被引量:1
1
作者 Erfu Yang Hongjun Xiang +1 位作者 Dongbing Gu Zhenpeng Zhang 《International Journal of Automation and computing》 EI 2007年第3期255-261,共7页
Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be signi... Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future. 展开更多
关键词 Liquid rocket propulsion systems inverse problem fault diagnosis genetic algorithm comparative study.
下载PDF
Derivation of a Revised Tsiolkovsky Rocket Equation That Predicts Combustion Oscillations
2
作者 Zaki Harari 《Advances in Aerospace Science and Technology》 2024年第1期10-27,共18页
Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision mod... Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering. 展开更多
关键词 Tsiolkovsky rocket Equation Ideal rocket Equation rocket propulsion Newton’s Third Law Combustion Oscillations Combustion Instability
下载PDF
Propulsion System of New-generation Small Rocket Passed First Test
3
《Aerospace China》 2012年第4期22-22,共1页
Developed by the Academy of Aerospace Liquid Propulsion Technology (AALPT), the propulsion system for the new-generation light-lift liquid launch vehicle passed its first ground test firing on November 27, 2012 at the... Developed by the Academy of Aerospace Liquid Propulsion Technology (AALPT), the propulsion system for the new-generation light-lift liquid launch vehicle passed its first ground test firing on November 27, 2012 at the Beijing Institute of Aerospace Testing Technology. The event signifies that this is the only domestic static test-firing facility for rocket propulsion systems that can meet the development requirements for new-generation launch vehicles, 展开更多
关键词 propulsion System of New-generation Small rocket Passed First Test
下载PDF
Numerical Analysis and Modelling of a 100 N Hypergolic Liquid Bipropellant Thruster
4
作者 Grace Olileanya Ngwu Benjamin Iyenagbe Ugheoke +2 位作者 Olatunbosun Tarfa Yusuf Mopa Ashem Nyabam Spencer Ojogba Onuh 《Advances in Aerospace Science and Technology》 2020年第4期85-99,共15页
This study focuses on the stepwise procedure involved in the development of a numerical model of a bi-propellant hypergolic chemical propulsion system using key features and performance characteristics of existing and... This study focuses on the stepwise procedure involved in the development of a numerical model of a bi-propellant hypergolic chemical propulsion system using key features and performance characteristics of existing and planned (near future) propulsion systems. The study targets specific impulse of 100</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">N delivery performance of thrust chambers which is suitable for primary propulsion and attitude control for spacecraft. Results from numerical models are reported and validated with the Rocket Propulsion Analysis (RPA) computation concept. In the modelling process, there was proper consideration for the essential parts of the thruster engine such as the nozzle, combustion chamber, catalyst bed, injector, and cooling jacket. This propulsion system is designed to be fabricated in our next step in advancing this idea, using a combination of additive manufacturing technology and commercial off the shelf (COTS) parts along with non-toxic propellants. The two non-toxic propellants being considered are Hydrogen Peroxide as the oxidiser and Kerosene as the fuel, thus making it a low-cost, readily available and environmentally-friendly option for future microsatellite missions. 展开更多
关键词 Bi-Propellant Hypergolic Chemical Thrust Chambers Hydrogen Peroxide Additive Manufacturing rocket propulsion Analysis
下载PDF
空化诱导轮内流动不稳定性的最大似然估
5
作者 Luca d'Agostino 《风机技术》 2020年第6期7-17,共11页
The article illustrates the application of Bayesian estimation to the identification of flow instabilities,with special reference to rotating cavitation,in a three-bladed axial inducer using the unsteady pressure read... The article illustrates the application of Bayesian estimation to the identification of flow instabilities,with special reference to rotating cavitation,in a three-bladed axial inducer using the unsteady pressure readings of a single transducer mounted on the casing just behind the leading edges of the impeller blades.The typical trapezoidal pressure distribution in the blade channels is parametrized and modulated in time and space for theoretically reproducing the expected pressure generated by known forms of cavitation instabilities(cavitation auto-oscillations and higher-order surge cavitation modes,n-lobed subsynchronous/synchronous/super-synchronous rotating cavitation).The Fourier spectra of the theoretical pressure so obtained in the rotating frame are transformed in the stationary frame,frequency broadened to better approximate the experimental results,and parametrically fitted by maximum likelihood estimation to the measured auto-correlation spectra.Each form of instability generates a characteristic distribution of sidebands in addition to its fundamental frequency.The identification makes use of this information for effective detection and characterization of multiple simultaneous flow instabilities with intensities spanning over about 20 db down to about 4 db signal-to-noise ratios.The same information also allows for effectively bypassing the aliasing limitations of traditional cross-correlation methods in the discrimination of multiple-lobed azimuthal instabilities from the measurements returned by arrays of equally spaced sensors.The method returns both the estimates of the model parameters and their standard deviations,providing the information needed for the assessment of the statistical significance of the results.The proposed approach represents therefore a promising tool for experimental research on flow instabilities in high-performance turbopumps. 展开更多
关键词 rocket propulsion Liquid Propellant rocket Engines TURBOMACHINERY Turbopumps Turbopump Cavitation Instabilities Parametric Identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部