Ejector mode is a unique and critical phase of wide-range rocket-based combined cycle(RBCC)engine.In this paper,a quasi-one-dimensional thermodynamic performance modeling method,with more detailed model treatments for...Ejector mode is a unique and critical phase of wide-range rocket-based combined cycle(RBCC)engine.In this paper,a quasi-one-dimensional thermodynamic performance modeling method,with more detailed model treatments for the inlet-diffuser system,pri-mary/secondaryflow interaction,and pressure feedback matching,was developed for operating characteristics studies and multi-objective optimization analysis of the ejector mode of an actual RBCC engine.A series of three-dimensional simulations of separate inlet and fullflowpath was completed to validate the modeling study and provide further insight into the operating charac-teristics.The primary/secondary equilibrium pressure ratio functions a significant effect on ejector mode performance,a higher performance augmentation can be obtained by lower rocket pressure ratio,larger mixing section area ratio,smaller throttling throat and higher equivalence ratio,within an appropriate range.The positive performance augmentation can be realized at lowflight Mach conditions,the coordination and trade-off relationships between specific im-pulse,performance augmentation ratio and thrust-to-area ratio during ejector mode are present by the Pareto-front from MOP analysis.It is further verified by CFD simulation that,the operating back-pressure at the exit of inlet-diffuser system functions a decisive influence on the airbreathing characteristics,the pressure feedback and matching should be well-controlled for secondaryflowrate and performance augmentation.The thermodynamic modeling analysis re-sults are basically consistent with those of numerical simulation,to validate the rationality and effectiveness of the modeling method.展开更多
To reduce the drag generated by the recirculation flow at the rocket base in a RocketBased Combined Cycle(RBCC)engine operating in the ramjet/scramjet mode,a novel annular rocket RBCC engine based on a central plug co...To reduce the drag generated by the recirculation flow at the rocket base in a RocketBased Combined Cycle(RBCC)engine operating in the ramjet/scramjet mode,a novel annular rocket RBCC engine based on a central plug cone was proposed.The performance loss mechanism caused by the recirculation flow at the rocket base and the influence of the plug cone configuration on the thrust performance were studied.Results indicated that the recirculation flow at the rocket base extended through the entire combustor,which creates an extensive range of the"low-kineticenergy zone"at the center and leads to an engine thrust loss.The plug cone serving as a surface structure had a restrictive effect on the internal flow of the engine,making it smoothly transit at the position of the large separation zone.The model RBCC engine could achieve a maximum thrust augmentation of 37.6%with a long plug cone that was twice diameter of the inner isolator.However,a shorter plug cone that was half diameter of the inner isolator proved less effective at reducing the recirculation flow for a supersonic flow and induced an undesirable flow fraction that diminished the thrust performance.Furthermore,the effectiveness of the plug cone increased with the flight Mach number,indicating that it could further broaden the operating speed range of the scramjet mode.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52076094).
文摘Ejector mode is a unique and critical phase of wide-range rocket-based combined cycle(RBCC)engine.In this paper,a quasi-one-dimensional thermodynamic performance modeling method,with more detailed model treatments for the inlet-diffuser system,pri-mary/secondaryflow interaction,and pressure feedback matching,was developed for operating characteristics studies and multi-objective optimization analysis of the ejector mode of an actual RBCC engine.A series of three-dimensional simulations of separate inlet and fullflowpath was completed to validate the modeling study and provide further insight into the operating charac-teristics.The primary/secondary equilibrium pressure ratio functions a significant effect on ejector mode performance,a higher performance augmentation can be obtained by lower rocket pressure ratio,larger mixing section area ratio,smaller throttling throat and higher equivalence ratio,within an appropriate range.The positive performance augmentation can be realized at lowflight Mach conditions,the coordination and trade-off relationships between specific im-pulse,performance augmentation ratio and thrust-to-area ratio during ejector mode are present by the Pareto-front from MOP analysis.It is further verified by CFD simulation that,the operating back-pressure at the exit of inlet-diffuser system functions a decisive influence on the airbreathing characteristics,the pressure feedback and matching should be well-controlled for secondaryflowrate and performance augmentation.The thermodynamic modeling analysis re-sults are basically consistent with those of numerical simulation,to validate the rationality and effectiveness of the modeling method.
基金supported by the National Natural Science Foundation of China(Nos.11925207 and 92252206)the Hunan Province Graduate Innovation Project,China(No.XJCX2023059)。
文摘To reduce the drag generated by the recirculation flow at the rocket base in a RocketBased Combined Cycle(RBCC)engine operating in the ramjet/scramjet mode,a novel annular rocket RBCC engine based on a central plug cone was proposed.The performance loss mechanism caused by the recirculation flow at the rocket base and the influence of the plug cone configuration on the thrust performance were studied.Results indicated that the recirculation flow at the rocket base extended through the entire combustor,which creates an extensive range of the"low-kineticenergy zone"at the center and leads to an engine thrust loss.The plug cone serving as a surface structure had a restrictive effect on the internal flow of the engine,making it smoothly transit at the position of the large separation zone.The model RBCC engine could achieve a maximum thrust augmentation of 37.6%with a long plug cone that was twice diameter of the inner isolator.However,a shorter plug cone that was half diameter of the inner isolator proved less effective at reducing the recirculation flow for a supersonic flow and induced an undesirable flow fraction that diminished the thrust performance.Furthermore,the effectiveness of the plug cone increased with the flight Mach number,indicating that it could further broaden the operating speed range of the scramjet mode.