Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Du...Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Duncan model is adopted to compute the stress and strain of both the rockfill dam and the asphalt-concrete core after karst grouting and other treatments. The results indicate that the complicated stress and deformation of both the dam body and the core are within reasonable ranges. It is shown that structure design and foundation treatment of the dam are feasible and can be used as a reference for other similar projects.展开更多
The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden laye...The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.展开更多
文摘Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Duncan model is adopted to compute the stress and strain of both the rockfill dam and the asphalt-concrete core after karst grouting and other treatments. The results indicate that the complicated stress and deformation of both the dam body and the core are within reasonable ranges. It is shown that structure design and foundation treatment of the dam are feasible and can be used as a reference for other similar projects.
基金the National Natural Science Foundation of China (Grant No.51379066)the Fundamental Research Funds for the Central Universities (Grant No.2016B03514)+1 种基金the National Key Technology Support Program (Grant No.2015BAB07B05)the Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Techniques (Grant No.YK913007).
文摘The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.