The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are mot...In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are motivated by physical problems including the determination of the extremum of the fundamental vibration frequency and the localization of the vibration displacement.We demonstrate how an iterative rearrangement approach and a gradient descent approach with projection can successfully solve these optimization problems under different boundary conditions with different densities given.展开更多
Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,ta...Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.展开更多
Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and comp...Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.展开更多
The damage tolerance for pipe/rod bar in the auxiliary power units (APUs) support system is studied. The main objective is to study whether planes can safely land when the fatigue crack appears on the bar. Firstly, ...The damage tolerance for pipe/rod bar in the auxiliary power units (APUs) support system is studied. The main objective is to study whether planes can safely land when the fatigue crack appears on the bar. Firstly, the stress intensity factors (K~) of two bar structures are computed, and the iso-stress intensity factor (iso-Kl) model is presented. The model uses the finite element model (FEM) instead of the parameters of material to com- pute the crack propagation. Then, the general relations between Kt vs crack size are obtained for different mate- rials, inner to outer diameter ratios (D^n/Dout) and external crack propagation angles (0). Finally, the FEM anal- ysis results are input to the ANSYS parametric design language(ANSYS-APDL) software. And the fatigue life of damaged bar is estimated under the condition of loading spectrum.展开更多
Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composit...Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composite sucker rods are prone to debone and fracture.The connected characteristics are less considered,so the failure mechanism of the joint is still unclear.Based on the cohesive zone model(CZM)and the Johnson-Cook constitutive model,a novel full-scale numerical model of the joint with composite sucker rod was established,and verified by pull-out experiments.The mechanical properties and slip characteristics of the joint were studied,and the damaged procession of the joint was explored.The results showed that:a)the numerical model was in good agreement with the experimental results,and the error is within 5%;b)the von Mises stress,shear stress,and interface stress distributed symmetrically along the circumferential path increased gradually from the fixed end to the loading end;c)the first-bonded interface near the loading end was damaged at first,followed by debonding of the second-bonded interface,leading to the complete shear fracture of the epoxy,and resulted in the debonding of the joint with composite sucker rod,which can provide a theoretical basis for the structural design and optimization of the joint.展开更多
Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The...Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known.Therefore,sulfonated naphthalene formaldehyde(SNF)condensate was used for the performance improvement of RCPB.The synergistic effect of solid content(SC),lime-to-sand ratio,and SNF dosage on the rheological and physicomechanical properties,including slump,yield stress,bleeding rate,uniaxial compressive strength(UCS),as well as mechanism analysis of RCPB,have been explored.The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage,lime-to-sand ratio,and SC.The slump of fresh RCPB with 0.1wt%-0.5wt%SNF increased by 2.6%-26.2%,whereas the yield stress reduced by 4.1%-50.3%,indicating better workability and improved cohesiveness of the mix.The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage,and the peak decrease was 67.67%.UCS of RCPB first increased and then decreased with the increase of SNF dosage.At the optimal SNF addition ratio of 0.3wt%,the UCS of RCPB curing for 7,14 and,28 d ages increased by 31.5%,28.4%,and 29.5%,respectively.The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated.However,the later UCS increases at a slower rate.The research findings may guide the design and preparation of RCPB with adequate performance for practical applications.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
Nuclear energy is a vital source of clean energy that will continue to play an essential role in global energy production for future generations.Nuclear fuel rods are core components of nuclear power plants,and their ...Nuclear energy is a vital source of clean energy that will continue to play an essential role in global energy production for future generations.Nuclear fuel rods are core components of nuclear power plants,and their safe utilization is paramount.Due to its inherent high radioactivity,indirect neutron radiography(INR)is currently the only viable technology for irradiated nuclear fuel rods in the field of energy production.This study explores the experimental technique of indirect neutron computed tomography(INCT)for radioactive samples.This project includes the development of indium and dysprosium conversion screens of different thicknesses and conducts resolution tests to assess their performance.Moreover,pressurized water reactor(PWR)dummy nuclear fuel rods have been fabricated by self-developing substitute materials for cores and outsourcing of mechanical processing.Experimental research on the INR is performed using the developed dummy nuclear fuel rods.The sparse reconstruction technique is used to reconstruct the INR results of 120 pairs of dummy nuclear fuel rods at different angles,achieving a resolution of 0.8 mm for defect detection using INCT.展开更多
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi...Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.展开更多
As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary ...As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.展开更多
The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 softw...The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 software. The simulated results visualize the metal flow andthe dynamic evolutions of the strain, stress and temperature during the continuous hot rolling,especially inside the work-piece. It is shown that the non-uniform distributions of the strain,stress and temperature on the longitudinal and transverse sections are a distinct characteristic ofthe continuous hot rolling, which can be used as basic data for improving the tool design,predicting and controlling the micro-structural evolution of a bar and rod.展开更多
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
A film of mesoporous single-crystal rutile TiO2 rod arrays supported on a transparent conductive glass substrate was synthesized with the assistance of a template layer of closely packed silica nanospheres. This film ...A film of mesoporous single-crystal rutile TiO2 rod arrays supported on a transparent conductive glass substrate was synthesized with the assistance of a template layer of closely packed silica nanospheres. This film was used as a photoanode and showed significant improvement for photoelectrochemical water oxidation compared with a reference film of nonporous single-crystal rutile TiO2rod arrays.展开更多
Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification a...Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification are two key steps. The dynamometer card is firstly divided into four parts which include different production information according to the "four point method" used in actual oilfield production, and then the moment invariants for pattern recognition are extracted. An improved support vector machine (SVM) method is used for pattern classification whose error penalty parameter C and kernel function parameter g are optimally chosen by the particle swarm optimization (PSO) algorithm. The simulation results show the method proposed in this paper has good classification results.展开更多
The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, ...The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, EDS and X-ray diffractometer, the microstructure and phase composition of aluminum rod were measured and analyzed. The results indicate that the content of rare earth element Ce is between 0.05% -0.16% in the aluminum rod for electrical purpose. Its tensile strength is enhanced to some extent. The research also discovers that the tensile strength is enhanced remarkably with impurity element Si content increases. Because influence of Si is big to the conductivity, the Si content should be controlled continuously strictly in the aluminum for electrical purpose. Adding rare earth element Ce reduces the solid solubility of Si in the aluminum matrix, and the negative effect of Si on the aluminum conductor reduces effectively. So the limit of in Si content in aluminum rod for electrical purpose can be relaxed moderately.展开更多
Two tests initiated by unscrammed control rod withdrawal were performed on the High Temperature GasCooled Reactor-Test Module(HTR-10) in November 2003 after the reactor achieved its full power, and the test conditions...Two tests initiated by unscrammed control rod withdrawal were performed on the High Temperature GasCooled Reactor-Test Module(HTR-10) in November 2003 after the reactor achieved its full power, and the test conditions represented a typical transient scenario of modular high-temperature reactors(HTRs), called pressurized loss of forced cooling, and anticipated transient without scram.Based on the test parameters, the HTR-10 thermal behaviors under the test conditions were studied with the help of the system analysis code THERMIX. The combination of the test results and the investigation results makes the HTR-10 safety potential better understood. Key phenomena, such as the helium natural circulation and the temperature redistribution in the reactor, were revealed. As the safety feature of most significance, there is a large margin between the maximum fuel temperature and its safety limit in each test. Temperatures of thermocouples in different components were calculated by THERMIX and compared with the test values. The applicability of the code was verified by good agreement obtained from the comparison.展开更多
Lanthanum hydroxide with rod-like morphology was synthesized with simple hydration processing via the hydration of its bulk oxide in normal water solution at boiling temperature. An XRD pattern shows the formation of ...Lanthanum hydroxide with rod-like morphology was synthesized with simple hydration processing via the hydration of its bulk oxide in normal water solution at boiling temperature. An XRD pattern shows the formation of the hexagonal phase of La(OH)3, indicating that the hydration process is very rapid. The as-prepared La(OH)3 is almost entirely with a needle- or rod-like shape with a width of 2 - 3 μm and a length of 5 - 8 μm. The mechanism of the formation of La(OH)3 with rod-like morphology was preliminarily presented. It is easier to expand the simple hydration process on a large scale than the hydrothermal process.展开更多
A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The sl...A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.展开更多
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金supported by the DMS-1853701supported in part by the DMS-2208373.
文摘In this paper,we review computational approaches to optimization problems of inhomogeneous rods and plates.We consider both the optimization of eigenvalues and the localization of eigenfunctions.These problems are motivated by physical problems including the determination of the extremum of the fundamental vibration frequency and the localization of the vibration displacement.We demonstrate how an iterative rearrangement approach and a gradient descent approach with projection can successfully solve these optimization problems under different boundary conditions with different densities given.
基金supported in part by China Postdoctoral Science Foundation(No.2022MD723833)Natural Science Basic Research Program of Shaanxi Province(No.2023-JCYB-349)Young Elite Scientists Sponsorship Program by CSEE(No.JLB-2022-91)。
文摘Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.
基金Supported by National Natural Science Foundation of China(Grant No.51875033)Fundamental Research Funds for the Central Universities of China(Grant No.2021YJS137).
文摘Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.
文摘The damage tolerance for pipe/rod bar in the auxiliary power units (APUs) support system is studied. The main objective is to study whether planes can safely land when the fatigue crack appears on the bar. Firstly, the stress intensity factors (K~) of two bar structures are computed, and the iso-stress intensity factor (iso-Kl) model is presented. The model uses the finite element model (FEM) instead of the parameters of material to com- pute the crack propagation. Then, the general relations between Kt vs crack size are obtained for different mate- rials, inner to outer diameter ratios (D^n/Dout) and external crack propagation angles (0). Finally, the FEM anal- ysis results are input to the ANSYS parametric design language(ANSYS-APDL) software. And the fatigue life of damaged bar is estimated under the condition of loading spectrum.
基金Innovation fund project for graduate students of ChinaUniversity of Petroleum(East China)(No.22CX04032A)the Fundamental Research Funds for the CentralUniversities on this study is gratefully acknowledged+2 种基金the support of‘National Natural Science Foundation of China’(No.52304015)‘Postdoctoral Innovation Project of Shandong Province’(No.SDCX-ZG-202203098)‘Qingdao Postdoctoral Grant Project’(No.qdyy20210083).
文摘Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composite sucker rods are prone to debone and fracture.The connected characteristics are less considered,so the failure mechanism of the joint is still unclear.Based on the cohesive zone model(CZM)and the Johnson-Cook constitutive model,a novel full-scale numerical model of the joint with composite sucker rod was established,and verified by pull-out experiments.The mechanical properties and slip characteristics of the joint were studied,and the damaged procession of the joint was explored.The results showed that:a)the numerical model was in good agreement with the experimental results,and the error is within 5%;b)the von Mises stress,shear stress,and interface stress distributed symmetrically along the circumferential path increased gradually from the fixed end to the loading end;c)the first-bonded interface near the loading end was damaged at first,followed by debonding of the second-bonded interface,leading to the complete shear fracture of the epoxy,and resulted in the debonding of the joint with composite sucker rod,which can provide a theoretical basis for the structural design and optimization of the joint.
基金financially supported by the National Natural Science Foundation of China(Nos.52104156,52074351,52004330)the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3125)the Natural Science Foundation of Hunan Province,China(No.2022JJ30714)。
文摘Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known.Therefore,sulfonated naphthalene formaldehyde(SNF)condensate was used for the performance improvement of RCPB.The synergistic effect of solid content(SC),lime-to-sand ratio,and SNF dosage on the rheological and physicomechanical properties,including slump,yield stress,bleeding rate,uniaxial compressive strength(UCS),as well as mechanism analysis of RCPB,have been explored.The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage,lime-to-sand ratio,and SC.The slump of fresh RCPB with 0.1wt%-0.5wt%SNF increased by 2.6%-26.2%,whereas the yield stress reduced by 4.1%-50.3%,indicating better workability and improved cohesiveness of the mix.The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage,and the peak decrease was 67.67%.UCS of RCPB first increased and then decreased with the increase of SNF dosage.At the optimal SNF addition ratio of 0.3wt%,the UCS of RCPB curing for 7,14 and,28 d ages increased by 31.5%,28.4%,and 29.5%,respectively.The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated.However,the later UCS increases at a slower rate.The research findings may guide the design and preparation of RCPB with adequate performance for practical applications.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金supported in part by the National Key R&D Program of China(No.2022YFA1604002)the Sichuan Postdoctoral Research Program(No.TB2022035)the Nuclear Energy Development Research Program of China,and the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(No.SUSE652A001).
文摘Nuclear energy is a vital source of clean energy that will continue to play an essential role in global energy production for future generations.Nuclear fuel rods are core components of nuclear power plants,and their safe utilization is paramount.Due to its inherent high radioactivity,indirect neutron radiography(INR)is currently the only viable technology for irradiated nuclear fuel rods in the field of energy production.This study explores the experimental technique of indirect neutron computed tomography(INCT)for radioactive samples.This project includes the development of indium and dysprosium conversion screens of different thicknesses and conducts resolution tests to assess their performance.Moreover,pressurized water reactor(PWR)dummy nuclear fuel rods have been fabricated by self-developing substitute materials for cores and outsourcing of mechanical processing.Experimental research on the INR is performed using the developed dummy nuclear fuel rods.The sparse reconstruction technique is used to reconstruct the INR results of 120 pairs of dummy nuclear fuel rods at different angles,achieving a resolution of 0.8 mm for defect detection using INCT.
文摘Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.
基金supported by State Grid Ningxia Electric Power Co.,Ltd.under Grant 5229CG220006Natural Science Foundation of Ningxia Province under Grant 2022AAC03629.
文摘As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.
文摘The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM)was used for the simulation of the two-pass continuous hot rolling process of 60SiMnA spring steelbars and rods using MARC/AutoForge3.1 software. The simulated results visualize the metal flow andthe dynamic evolutions of the strain, stress and temperature during the continuous hot rolling,especially inside the work-piece. It is shown that the non-uniform distributions of the strain,stress and temperature on the longitudinal and transverse sections are a distinct characteristic ofthe continuous hot rolling, which can be used as basic data for improving the tool design,predicting and controlling the micro-structural evolution of a bar and rod.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
基金supported by the National Basic Research Program of China(2014CB239401)the National Natural Science Foundation of China(51402306+4 种基金5142221021090343)the Deanship of Scientific Research(50-130-35-HiC i)King Abdulaziz UniversitySaudi Arabia~~
文摘A film of mesoporous single-crystal rutile TiO2 rod arrays supported on a transparent conductive glass substrate was synthesized with the assistance of a template layer of closely packed silica nanospheres. This film was used as a photoanode and showed significant improvement for photoelectrochemical water oxidation compared with a reference film of nonporous single-crystal rutile TiO2rod arrays.
基金support from the Key Project of the National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expenses of Ministry of Education (N100604001)
文摘Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification are two key steps. The dynamometer card is firstly divided into four parts which include different production information according to the "four point method" used in actual oilfield production, and then the moment invariants for pattern recognition are extracted. An improved support vector machine (SVM) method is used for pattern classification whose error penalty parameter C and kernel function parameter g are optimally chosen by the particle swarm optimization (PSO) algorithm. The simulation results show the method proposed in this paper has good classification results.
基金Project supported by the Baotou Aluminum Co. Ltd.
文摘The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, EDS and X-ray diffractometer, the microstructure and phase composition of aluminum rod were measured and analyzed. The results indicate that the content of rare earth element Ce is between 0.05% -0.16% in the aluminum rod for electrical purpose. Its tensile strength is enhanced to some extent. The research also discovers that the tensile strength is enhanced remarkably with impurity element Si content increases. Because influence of Si is big to the conductivity, the Si content should be controlled continuously strictly in the aluminum for electrical purpose. Adding rare earth element Ce reduces the solid solubility of Si in the aluminum matrix, and the negative effect of Si on the aluminum conductor reduces effectively. So the limit of in Si content in aluminum rod for electrical purpose can be relaxed moderately.
基金supported by the Chinese National S&T Major Project(No.ZX069)
文摘Two tests initiated by unscrammed control rod withdrawal were performed on the High Temperature GasCooled Reactor-Test Module(HTR-10) in November 2003 after the reactor achieved its full power, and the test conditions represented a typical transient scenario of modular high-temperature reactors(HTRs), called pressurized loss of forced cooling, and anticipated transient without scram.Based on the test parameters, the HTR-10 thermal behaviors under the test conditions were studied with the help of the system analysis code THERMIX. The combination of the test results and the investigation results makes the HTR-10 safety potential better understood. Key phenomena, such as the helium natural circulation and the temperature redistribution in the reactor, were revealed. As the safety feature of most significance, there is a large margin between the maximum fuel temperature and its safety limit in each test. Temperatures of thermocouples in different components were calculated by THERMIX and compared with the test values. The applicability of the code was verified by good agreement obtained from the comparison.
基金Project supported bythe National Natural Science Foundation of China (20161002) ,the Natural Science Foundation of JiangxiProvince (0220004) and the Education Department of Jiangxi Province
文摘Lanthanum hydroxide with rod-like morphology was synthesized with simple hydration processing via the hydration of its bulk oxide in normal water solution at boiling temperature. An XRD pattern shows the formation of the hexagonal phase of La(OH)3, indicating that the hydration process is very rapid. The as-prepared La(OH)3 is almost entirely with a needle- or rod-like shape with a width of 2 - 3 μm and a length of 5 - 8 μm. The mechanism of the formation of La(OH)3 with rod-like morphology was preliminarily presented. It is easier to expand the simple hydration process on a large scale than the hydrothermal process.
基金Project (2013B091300016) supported by the Department of Science and Technology of Guangdong Province,China
文摘A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.