The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspens...This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.展开更多
It is studied how the aluminum foil chatter mark is produced and controlled The stableness of hydraulic AGC system,fluid vibration of capsule system,and electromechanical coupling of AC/AC VVVF system and de coupli...It is studied how the aluminum foil chatter mark is produced and controlled The stableness of hydraulic AGC system,fluid vibration of capsule system,and electromechanical coupling of AC/AC VVVF system and de coupling are also studied It is shown that rolling mill design should go to system dynamic design from traditional design The framed drawing of system dynamic design program is presented.展开更多
If the draught of each mill stand is limited by forced bite condition for compact continuous mill,the rolling load difference between one mill stand and another is very big.If deforming regulation of relative load for...If the draught of each mill stand is limited by forced bite condition for compact continuous mill,the rolling load difference between one mill stand and another is very big.If deforming regulation of relative load for each mill stand is approximate to the same,the productive capacity of compact continuous mill can be brought into full play,and also the safety running and the smooth rolling of mill can be ensured.展开更多
A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different col...A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.展开更多
Shape rolling is widely employed in the production of long workpieces with appropriate cross-section profiles for other industrial applications. In the development of shape rolling systems, roll pass design (RPD) play...Shape rolling is widely employed in the production of long workpieces with appropriate cross-section profiles for other industrial applications. In the development of shape rolling systems, roll pass design (RPD) plays an essential role on the quality control of products, service life of rolls, productivity of rolling systems, as well as energy consumption of rolling operations. This study attempts to establish a generic strategy based on hybrid modeling and an improved genetic algorithm, to support the optimizations of RPD and shape rolling operations at a systematic perspective. Objectives include improving the quality and efficiency of RPD, reducing energy consumption of shape rolling, as well as releasing the demands on costly trails and expert knowledge in RPD. Hybrid modeling based on cross-disciplinary knowledge is developed to overcome the limitations of isolated single-disciplinary models. And conventional genetic algorithm is improved for the implementation of optimal design. Targeting to integrate empirical data and published reliable solutions into optimizations, a parameters estimation method is proposed to transfer the initially misaligned models into a uniform pattern. A tool based on the Matlab platform is developed to demonstrate the optimal design operations, with case studies involved to validate the proposed methodology.展开更多
An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is...An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.展开更多
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
A stepped-section ring consists of two rectangular section rings,a big ring and a small ring,joined together.This kind of ring is difficult to process by the ring rolling technique because of its complex cross-section...A stepped-section ring consists of two rectangular section rings,a big ring and a small ring,joined together.This kind of ring is difficult to process by the ring rolling technique because of its complex cross-sectional shape.Thus a reasonable blank design is necessary.In this paper,four blank designs,one is a rectangular cross-section and the other three are stepped-sections with different step volumes,are proposed and compared with each other using theoretical analysis,FE simulation and experiments.It is shown that three of the designs can lead to volume flow from small ring into big ring during rolling,which is disadvantageous for shape formation and dimensional precision;however,the other design may result in good ring shape and high dimensional precision.Therefore,the optimal blank design is determined to be the one in which the volumes of the big and small rings of the initial blank are equal to those of the final rings,respectively.展开更多
The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a la...The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.展开更多
Owing to high power density and long cycle life,micro-supercapacitors(MSCs)are regarded as a prevalent energy storage unit for miniaturized electronics in modern life.A major bottleneck is achieving enhanced energy de...Owing to high power density and long cycle life,micro-supercapacitors(MSCs)are regarded as a prevalent energy storage unit for miniaturized electronics in modern life.A major bottleneck is achieving enhanced energy density without sacrificing both power density and cycle life.To this end,designing electrodes in a“smart”way has emerged as an effective strategy to achieve a trade-off between the energy and power densities of MSCs.In the past few years,considerable research efforts have been devoted to exploring new electrode materials for high capacitance,but designing clever configurations for electrodes has rarely been investigated from a structural point of view,which is also important for MSCs within a limited footprint area,in particular.This review article categorizes and arranges these“smart”design strategies of electrodes into three design concepts:layer-by-layer,scaffoldassisted and rolling origami.The corresponding strengths and challenges are comprehensively summarized,and the potential solutions to resolve these challenges are pointed out.Finally,the smart design principle of the electrodes of MSCs and key perspectives for future research in this field are outlined.展开更多
Ultra-high strength alloys with good ductility are ideal materials for lightweight structural application in various industries. However, improving the strength of alloys frequently results in a reduction in ductility...Ultra-high strength alloys with good ductility are ideal materials for lightweight structural application in various industries. However, improving the strength of alloys frequently results in a reduction in ductility, which is known as the strength-ductility trade-off in metallic materials. Current alloy design strategies for improving the ductility of ultra-high strength alloys mainly focus on the selection of alloy composition (atomic length scale) or manipulating ultra-fine and nano-grained microstructure (grain length scale). The intermediate length scale between atomic and grain scales is the dislocation length scale. A new alloy design concept based on such dislocation length scale, namely dislocation engineering, is illustrated in the present work. This dislocation engineering concept has been successfully substantiated by the design and fabrication of a deformed and partitioned (D&P) steel with a yield strength of 2,2 GPa and an uniform elongation of 16%. In this D&P steel, high dislocation density can not only increase strength but also improve ductility. High dislocation density is mainly responsible for the improved yield strength through dislocation forest hardening, whilst the improved ductility is achieved by the glide of intensive mobile dislocations and well-controlled transformation-induced plasticity (TRIP) effect, both of which are governed by the high dislocation density resulting from warm rolling and martensitic transformation during cold rolling. In addition, the present work proposes for the first time to apply such dislocation engineering concept to the quenching and partitioning (Q&P) steel by incorporating a warm rolling process prior to the quenching step, with an aim to improve simultaneously the strength and ductility of the Q&P steel. It is believed that dislocation engineering provides a new promising alloy design strategy for producing novel strong and ductile alloys.展开更多
随着电子产品小型化和液晶显示器IC封装技术的快速发展,COF(Chip on Film)技术的应用市场得到了迅速扩大。按照片式减成方法制作的线宽/线距在50μm/50μm以下的精细线路,常常会出现导线过细或断线等缺陷。论文采用目前先进的RTR(Roll t...随着电子产品小型化和液晶显示器IC封装技术的快速发展,COF(Chip on Film)技术的应用市场得到了迅速扩大。按照片式减成方法制作的线宽/线距在50μm/50μm以下的精细线路,常常会出现导线过细或断线等缺陷。论文采用目前先进的RTR(Roll to Roll)生产工艺,选用12μm铜箔、15μm干膜,使用玻璃菲林进行图形转移,并运用正交设计法对影响精细线路品质的曝光能量、显影速度、蚀刻速度、蚀刻压力等因素进行优化试验。以精细线路的线宽和蚀刻系数作为评价标准,找出最佳参数,并分析了蚀刻压力对精细线路的影响机理。将最优化参数应用到生产中,使25μm/25μm的COF精细线路的成品率提高20%。最终实现25μm/25μm的COF精细线路的小批量生产。展开更多
Production characteristics of high speed rod are fast speed,complex section and internal microstructure evolution,which bring great problems to analyze and solve the quality disputes.Therefore,a serial process models ...Production characteristics of high speed rod are fast speed,complex section and internal microstructure evolution,which bring great problems to analyze and solve the quality disputes.Therefore,a serial process models have been developed based on the characteristics of high speed rod:due to rod stock to be square section,a two dimension model has been developed to predict the evolution of internal temperature and grain coarsening.As for the rod rolling process,an automatic section design system has been written, which can show section filling condition and process parameters such as temperature,pressure and recrystallization etc per pass.As for rod cooling stage,an integrated model which coupled phase transformation,temperature and final properties was developed and applied in real production with good results.展开更多
By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using ...By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using this assumption,there is a significant error induced in high-precision computer numerical control(CNC) machine tools as compared with reality. One of the most important reasons for this error is failing to consider the error averaging e ect of motion pair elements. Therefore, this work examines a high-precision horizontal machining center as its research object, and analyzes the error averaging mechanism of a rolling guide pair under a deformation of the rolling elements. The carriage bearing forces caused by guideway straightness errors are obtained by constructing a geometric error model of a single carriage. The relationship between guideway straightness errors and carriage bearing forces is described by a transfer function in the spatial frequency domain, and its characteristics are analyzed. It quantifies the so-called error averaging e ect of the rolling guide system and, on this basis, a static model for four carriages is established to reflect the error averaging e ect of the rolling guide pair on the position and orientation errors of the motion pair. In addition, it is found that the wavelengths and phase di erences of guideway errors a ect this error averaging mechanism, but the amplitude and preload have little influence thereon. The experiment result shows that the kinematic straightness errors in the x-and y-directions were approximately 1/3 to 1/2 of the guideway straightness errors in the corresponding directions. The results can be used to guide the precision design and assembly of machine tools.展开更多
An algorithm is presented for computationally simulating collars and drafting patterns. The collar shape was modeled by three-dimensional Bezier patch. Changing the position of consol points of the patch can interacti...An algorithm is presented for computationally simulating collars and drafting patterns. The collar shape was modeled by three-dimensional Bezier patch. Changing the position of consol points of the patch can interactively control the collar shape. Using triangular surface developing method, patterns of various styles of stand collar and separating collar were drafted. As the subsystem of 3D apparel design system, an interactive collar design system is constructed. To inspect the practical usage, we reproduced the collars using these patterns drafted by the interactive collar design system.Comparing with simulated collars, the system demonstrated well and we found it is more reliable and accurate than the method of handwork.展开更多
The High Tension Roll Separator (HTRS) is one of the main electrostatic unit operations employed to separate titanium minerals like ilmenite, rutile and leucoxene which behave as conducting from zircon, sillimanite, g...The High Tension Roll Separator (HTRS) is one of the main electrostatic unit operations employed to separate titanium minerals like ilmenite, rutile and leucoxene which behave as conducting from zircon, sillimanite, garnet and monazite which behave as non-conducting minerals when a high potential difference is applied. Three process inputs, namely roll speed, feed material temperature and roll speed have been optimized. Experiments were conducted based on the Box- Behnken factorial design;the results were analyzed using response surface methodology (RSM). A new term, called Operational Quality Index (OQI) has been defined as a process output, which is maximized by quadratic programming, to obtain the optimum operating conditions. The maximum value of OQI obtained under the constraints of grade >96% and recovery >98% is 195.53, at the following operating conditions—Temperature: 102°C, Feed Rate: 1.75 tph and Roll Speed: 132 rpm. Under these conditions, the grade and recovery obtained are 96.6% and 98.9% respectively.展开更多
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
基金the Ministry of Science and Technology of Taiwan (Grants MOST 104-2221-E-327019, MOST 105-2221-E-327-014) for financial support of this study
文摘This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.
基金This project is supported by the 9th Five Year Plan (No-95-528-03-02-03c).
文摘It is studied how the aluminum foil chatter mark is produced and controlled The stableness of hydraulic AGC system,fluid vibration of capsule system,and electromechanical coupling of AC/AC VVVF system and de coupling are also studied It is shown that rolling mill design should go to system dynamic design from traditional design The framed drawing of system dynamic design program is presented.
文摘If the draught of each mill stand is limited by forced bite condition for compact continuous mill,the rolling load difference between one mill stand and another is very big.If deforming regulation of relative load for each mill stand is approximate to the same,the productive capacity of compact continuous mill can be brought into full play,and also the safety running and the smooth rolling of mill can be ensured.
文摘A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.
基金Supported by Scientific Research Foundation of Water Resources Department in Hunan Province of China(Grant No.CSCG-201808020002)Novelty in Civil Engineering of Key Discipline in Hunan Province of China(Grant No.13ZDXK10)Research Study and Innovative Experiment of Undergraduates in 2018:Experimental Study on Grouting Model of Surrounding Rock of Tunnel
文摘Shape rolling is widely employed in the production of long workpieces with appropriate cross-section profiles for other industrial applications. In the development of shape rolling systems, roll pass design (RPD) plays an essential role on the quality control of products, service life of rolls, productivity of rolling systems, as well as energy consumption of rolling operations. This study attempts to establish a generic strategy based on hybrid modeling and an improved genetic algorithm, to support the optimizations of RPD and shape rolling operations at a systematic perspective. Objectives include improving the quality and efficiency of RPD, reducing energy consumption of shape rolling, as well as releasing the demands on costly trails and expert knowledge in RPD. Hybrid modeling based on cross-disciplinary knowledge is developed to overcome the limitations of isolated single-disciplinary models. And conventional genetic algorithm is improved for the implementation of optimal design. Targeting to integrate empirical data and published reliable solutions into optimizations, a parameters estimation method is proposed to transfer the initially misaligned models into a uniform pattern. A tool based on the Matlab platform is developed to demonstrate the optimal design operations, with case studies involved to validate the proposed methodology.
文摘An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
基金Supported by the Project of National Natural Science Foundation of China (Grant No.50675164)the Natural Science Foundation of China for Distinguished Young Scholars (Grant No.50725517)
文摘A stepped-section ring consists of two rectangular section rings,a big ring and a small ring,joined together.This kind of ring is difficult to process by the ring rolling technique because of its complex cross-sectional shape.Thus a reasonable blank design is necessary.In this paper,four blank designs,one is a rectangular cross-section and the other three are stepped-sections with different step volumes,are proposed and compared with each other using theoretical analysis,FE simulation and experiments.It is shown that three of the designs can lead to volume flow from small ring into big ring during rolling,which is disadvantageous for shape formation and dimensional precision;however,the other design may result in good ring shape and high dimensional precision.Therefore,the optimal blank design is determined to be the one in which the volumes of the big and small rings of the initial blank are equal to those of the final rings,respectively.
基金Supported by National Natural Science Foundation of China(Grant Nos.51174057,51274062)National High Technology Research and Development Program of China(863 Program,Grant No.2012AA03A503)
文摘The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.
基金Sino‐German Center for Research Promotion,Grant/Award Number:GZ1579China Scholarship Council,Grant/Award Number:201908530218Deutsche Forschungsgemeinschaft,Grant/Award Number:LE 2249/5‐1。
文摘Owing to high power density and long cycle life,micro-supercapacitors(MSCs)are regarded as a prevalent energy storage unit for miniaturized electronics in modern life.A major bottleneck is achieving enhanced energy density without sacrificing both power density and cycle life.To this end,designing electrodes in a“smart”way has emerged as an effective strategy to achieve a trade-off between the energy and power densities of MSCs.In the past few years,considerable research efforts have been devoted to exploring new electrode materials for high capacitance,but designing clever configurations for electrodes has rarely been investigated from a structural point of view,which is also important for MSCs within a limited footprint area,in particular.This review article categorizes and arranges these“smart”design strategies of electrodes into three design concepts:layer-by-layer,scaffoldassisted and rolling origami.The corresponding strengths and challenges are comprehensively summarized,and the potential solutions to resolve these challenges are pointed out.Finally,the smart design principle of the electrodes of MSCs and key perspectives for future research in this field are outlined.
基金the support from Research Grants Council of Hong Kong (Grants No. 17203014, HKU712713E and 17255016)the National Natural Science Foundation of China (Grant No. U1560204)
文摘Ultra-high strength alloys with good ductility are ideal materials for lightweight structural application in various industries. However, improving the strength of alloys frequently results in a reduction in ductility, which is known as the strength-ductility trade-off in metallic materials. Current alloy design strategies for improving the ductility of ultra-high strength alloys mainly focus on the selection of alloy composition (atomic length scale) or manipulating ultra-fine and nano-grained microstructure (grain length scale). The intermediate length scale between atomic and grain scales is the dislocation length scale. A new alloy design concept based on such dislocation length scale, namely dislocation engineering, is illustrated in the present work. This dislocation engineering concept has been successfully substantiated by the design and fabrication of a deformed and partitioned (D&P) steel with a yield strength of 2,2 GPa and an uniform elongation of 16%. In this D&P steel, high dislocation density can not only increase strength but also improve ductility. High dislocation density is mainly responsible for the improved yield strength through dislocation forest hardening, whilst the improved ductility is achieved by the glide of intensive mobile dislocations and well-controlled transformation-induced plasticity (TRIP) effect, both of which are governed by the high dislocation density resulting from warm rolling and martensitic transformation during cold rolling. In addition, the present work proposes for the first time to apply such dislocation engineering concept to the quenching and partitioning (Q&P) steel by incorporating a warm rolling process prior to the quenching step, with an aim to improve simultaneously the strength and ductility of the Q&P steel. It is believed that dislocation engineering provides a new promising alloy design strategy for producing novel strong and ductile alloys.
文摘随着电子产品小型化和液晶显示器IC封装技术的快速发展,COF(Chip on Film)技术的应用市场得到了迅速扩大。按照片式减成方法制作的线宽/线距在50μm/50μm以下的精细线路,常常会出现导线过细或断线等缺陷。论文采用目前先进的RTR(Roll to Roll)生产工艺,选用12μm铜箔、15μm干膜,使用玻璃菲林进行图形转移,并运用正交设计法对影响精细线路品质的曝光能量、显影速度、蚀刻速度、蚀刻压力等因素进行优化试验。以精细线路的线宽和蚀刻系数作为评价标准,找出最佳参数,并分析了蚀刻压力对精细线路的影响机理。将最优化参数应用到生产中,使25μm/25μm的COF精细线路的成品率提高20%。最终实现25μm/25μm的COF精细线路的小批量生产。
文摘Production characteristics of high speed rod are fast speed,complex section and internal microstructure evolution,which bring great problems to analyze and solve the quality disputes.Therefore,a serial process models have been developed based on the characteristics of high speed rod:due to rod stock to be square section,a two dimension model has been developed to predict the evolution of internal temperature and grain coarsening.As for the rod rolling process,an automatic section design system has been written, which can show section filling condition and process parameters such as temperature,pressure and recrystallization etc per pass.As for rod cooling stage,an integrated model which coupled phase transformation,temperature and final properties was developed and applied in real production with good results.
基金Supported by National Science and Technology Major Project of China(Grant No.2015ZX04005001)Tianjin Provincial Nature Science Foundation of China(Grant No.16JCZDJC38400)
文摘By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using this assumption,there is a significant error induced in high-precision computer numerical control(CNC) machine tools as compared with reality. One of the most important reasons for this error is failing to consider the error averaging e ect of motion pair elements. Therefore, this work examines a high-precision horizontal machining center as its research object, and analyzes the error averaging mechanism of a rolling guide pair under a deformation of the rolling elements. The carriage bearing forces caused by guideway straightness errors are obtained by constructing a geometric error model of a single carriage. The relationship between guideway straightness errors and carriage bearing forces is described by a transfer function in the spatial frequency domain, and its characteristics are analyzed. It quantifies the so-called error averaging e ect of the rolling guide system and, on this basis, a static model for four carriages is established to reflect the error averaging e ect of the rolling guide pair on the position and orientation errors of the motion pair. In addition, it is found that the wavelengths and phase di erences of guideway errors a ect this error averaging mechanism, but the amplitude and preload have little influence thereon. The experiment result shows that the kinematic straightness errors in the x-and y-directions were approximately 1/3 to 1/2 of the guideway straightness errors in the corresponding directions. The results can be used to guide the precision design and assembly of machine tools.
文摘An algorithm is presented for computationally simulating collars and drafting patterns. The collar shape was modeled by three-dimensional Bezier patch. Changing the position of consol points of the patch can interactively control the collar shape. Using triangular surface developing method, patterns of various styles of stand collar and separating collar were drafted. As the subsystem of 3D apparel design system, an interactive collar design system is constructed. To inspect the practical usage, we reproduced the collars using these patterns drafted by the interactive collar design system.Comparing with simulated collars, the system demonstrated well and we found it is more reliable and accurate than the method of handwork.
文摘The High Tension Roll Separator (HTRS) is one of the main electrostatic unit operations employed to separate titanium minerals like ilmenite, rutile and leucoxene which behave as conducting from zircon, sillimanite, garnet and monazite which behave as non-conducting minerals when a high potential difference is applied. Three process inputs, namely roll speed, feed material temperature and roll speed have been optimized. Experiments were conducted based on the Box- Behnken factorial design;the results were analyzed using response surface methodology (RSM). A new term, called Operational Quality Index (OQI) has been defined as a process output, which is maximized by quadratic programming, to obtain the optimum operating conditions. The maximum value of OQI obtained under the constraints of grade >96% and recovery >98% is 195.53, at the following operating conditions—Temperature: 102°C, Feed Rate: 1.75 tph and Roll Speed: 132 rpm. Under these conditions, the grade and recovery obtained are 96.6% and 98.9% respectively.