Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
Lightweight design is one of the development trends of the automobile industry. An effective way to achieve lightweight auto bodies is to use AHSS (advanced high strength steel ) for the safety components of automob...Lightweight design is one of the development trends of the automobile industry. An effective way to achieve lightweight auto bodies is to use AHSS (advanced high strength steel ) for the safety components of automobiles. This study has taken doorsill reinforcements made of martensite AHSS as the object ,and performed research on the AHSS roll forming technologies and prototype development of typical asymmetric open components. By means of finite element analysis (FEA) and simulation,studies have been carried out on the springback and edge wave defects during AHSS roll forming ,and an optimized process design has been achieved. The generation mechanisms of vertical bows ,horizontal cambers, twists,pre-punched hole distortion and cut end flare have been analyzed,and solutions to these defects have been given. In addition,tesing of the roll forming process for AHSS has been conducted and typical samples with required dimensional accuracy have been manufactured. This study has provided technical support for the large-scale application of AHSS.展开更多
The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn...The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement展开更多
The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large a...The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease.展开更多
The finite strip method in structural analysis has been extended, and elastic-plastic large deformation spline finite strip method based on the Updated-Lagrange method (U. L. method) was established to simulate roll f...The finite strip method in structural analysis has been extended, and elastic-plastic large deformation spline finite strip method based on the Updated-Lagrange method (U. L. method) was established to simulate roll forming process of channel section with outer edge. The deformation characteristics of strip was analyzed, and the three-dimensional displacement field, strain field and stress field of deformed strip were got. The calculation example proves that the peak transverse pressing membrane strain is on the corner part of the deformed strip, and the peak longitudinal stretching strain is on the outer edge part of the deformed strip in front of rolls. In addition, the transverse deformation of the deformed strip is principal, and the longitudinal deformation is small.展开更多
Flexible roll forming is a new roll forming process that produces parts with variable cross sections. This forming process is proposed to meet the demand of weight reduction of automobile industry. In order to study t...Flexible roll forming is a new roll forming process that produces parts with variable cross sections. This forming process is proposed to meet the demand of weight reduction of automobile industry. In order to study the mechanisms and material flow rules in this new forming process,the finite element mothod( FEM) model of a nine-step flexible roll forming of an ultra-high-strength steel bumper is established based on deep understanding and reasonable simplification of the process.Given that the material model is an important factor that influences the simulation accuracy,three material models which consist of different yield criteria and hardening models are adopted in the FEM models. Sheet thickness and springback amount calculated with three material models are studied comparatively. According to sheet thickness reduction and springback amounts,it is found that the MKi( Mises yield criterion and kinematic hardening law) model's result is larger than MI( Mises yield criterion and isotropic hardening law) model and HI( Hill's yield criterion and isotropic hardening law) model. Therefore,it is concluded that material models do have influences on the flexible roll forming simulation and need to be determined carefully.展开更多
Deformation allocation is an important factor that affects 720°curling forming from copper-coated steel strips to double-walled brazed tubes(DWBTs).In this study,four schemes of deformation allocation,considering...Deformation allocation is an important factor that affects 720°curling forming from copper-coated steel strips to double-walled brazed tubes(DWBTs).In this study,four schemes of deformation allocation,considering different weights of the total feed distance,are proposed,and a 3D finite element(FE)model of the multi-pass roll forming process for DWBT is developed and verified to investigate the cross-sectional evolution and deformation features.The results show the following.(i)In the 720°curling forming process from the steel strip into double-walled tubes,the curvature of the formed circular arc initially increases and then remains stable with roll forming,and the inner and outer tubes of the DWBT are formed in the third and fifth forming passes.Size forming can eliminate the gap between the double walls and improve the overall roundness.(ii)For different deformation allocations,the cross-sectional profiles of the roll-formed parts exhibit a discrepancy,and the deformation amount varies with the roll-forming process.The deformation amount in Scheme three is the maximum,and the cross-sectional profile deviates significantly from the ideal shape and fails to form a DWBT,which indicates that the deformation allocation is unsuitable.(iii)The roundness of the outer tube is better than that of the inner tube.Therefore,the roundness of the inner tube is the key to restricting the forming accuracy of the DWBT.Compared with Schemes one and two,Scheme four with a linear allocation of the total feed distance exhibits the best roundness,and the deformation allocation is reasonable;i.e.,when the contact points between the rollers and steel strip are in a straight line,the roundness of the DWBT is in good agreement with the ideal condition.展开更多
Increasing geometrical accuracy at open ends of the roll-formed part is difficult due to the release of residual stress after end cutting.In this work,a typical rail with a high requirement of geometry accuracy was se...Increasing geometrical accuracy at open ends of the roll-formed part is difficult due to the release of residual stress after end cutting.In this work,a typical rail with a high requirement of geometry accuracy was selected to realize the behaviors of residual stress release.First,residual stress distribution after roll forming is discussed in detail by finite element analysis with ABAQUS.In addition,two different approaches are proposed to check their capabilities in reducing the residual stress level.The results indicate that both additional rolling passes and multiple bending processes are beneficial to reducing uniform residual stress.展开更多
Cold roll forming is a high production but complex metal forming process under the conditions of coupled effects with multi-factor. A new booting finite element method (FEM) model using the updated Lagrangian (IAL...Cold roll forming is a high production but complex metal forming process under the conditions of coupled effects with multi-factor. A new booting finite element method (FEM) model using the updated Lagrangian (IAL) method for multistand roll forming process is developed and validated. Compared with most of the literatures related to roll forming simulation, the new model can take the roll rotation into account and is well suited for simulating multistand roll forming. Based on the model, the process of a channel section with outer edge formed with twelve passes is simulated and the sensitivity analysis of parameters is conducted with orthogonal design combined FEM model. It is found that the multistand roll forming process can be efficiently analyzed by the new booting model, and sensitivity analysis shows that the yield strength plays an important role in controlling the quality of the products.展开更多
The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under t...The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel.展开更多
Roll forming is a sheet metal forming process,which can form the profiles gradually to improve the formability of Q&P980 steel.The plastic deformation mechanism of roll forming was expounded by analysing the stres...Roll forming is a sheet metal forming process,which can form the profiles gradually to improve the formability of Q&P980 steel.The plastic deformation mechanism of roll forming was expounded by analysing the stress and strain distribution at the comer of a hat-type profile when the Q&P980 steel sheet passed through a series of continuous stands.And the plastic deformation mainly accumulated when the sheet metal was not in contact with the rolls.A simple mathematical model was derived by considering the longitudinal bending strain and the geometrical relationships of forming parameters,to analyse the longitudinal strain development in the deformation process.In addition,the roll forming experiments on hat-type profile parts of Q&P980 steel were carried out,and the theoretical analysis and simulation results are consistent with the experimental results.展开更多
Multi-stand roll forming is a process that has very complicated deformation behaviour and shows significant nonlinearity.In this paper, the sensitivity analysis of parameters for multi-stand roll forming was performed...Multi-stand roll forming is a process that has very complicated deformation behaviour and shows significant nonlinearity.In this paper, the sensitivity analysis of parameters for multi-stand roll forming was performed via a new booting finite element method(FEM) model.Compared with the most of simulation, the new model is more consistent with production process and can account for the effects of roll rotating speed.Based on the model, the process of an open section channel formed with 10 passes was simulated and the sensitivity analysis was conducted with orthogonal experiment design combined FEM model.The multi-stand roll forming process can be efficiently analyzed by the new booting model.And sensitivity analysis shows the hardening exponent plays an important role in controlling the quality of the products.展开更多
Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and opt...Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and optimized remeshing function, especially for the large deformation. In order to use this function sufficiently, simulation of cold rolling involutes spline can be implemented indirectly. The relationship between die and workpiece, forming force and characteristic of deformation in the forming process of cold rolling involutes spline are analyzed and researched. Meanwhile, reliable proofs for the design of dies and deforming equipment are provided.展开更多
The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating,the theory of roller design,and the stress and strain field analysis of cold r...The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating,the theory of roller design,and the stress and strain field analysis of cold roll-beating,etc.However,the research on law of metal flow in the forming process of involute spline cold roll-beating is rare.According to the principle of involute spline cold roll-beating,the contact model between the rollers and the spline shaft blank in the process of cold roll-beating forming is established,and the theoretical analysis of metal flow in the cold roll-beating deforming region is proceeded.A finite element model of the spline cold roll-beating process is established,the formation mechanism of the involute spline tooth profile in cold roll-beating forming process is studied,and the node flow tracks of the deformation area are analyzed.The experimental research on the metal flow of cold roll-beating spline is conducted,and the metallographic structure variation,grain characteristics and metal flow line of the different tooth profile area are analyzed.The experimental results show that the particle flow directions of the deformable bodies in cold roll-beating deformation area are determined by the minimum moving resistance.There are five types of metal flow rules of the deforming region in the process of cold roll-beating forming.The characteristics of involute spline cold roll-beating forming are given,and the forming mechanism of involute spline cold roll-beating is revealed.This paper researches the law of metal flow in the forming process of involute spline cold roll-beating,which provides theoretical supports for solving the tooth profile forming quality problem.展开更多
To simulate the process of cold roll-forming process, a new method isadopted. The theoretical foundation of this method is an elastic-plastic large deformation splinefinite strip method based on object-oriented progra...To simulate the process of cold roll-forming process, a new method isadopted. The theoretical foundation of this method is an elastic-plastic large deformation splinefinite strip method based on object-oriented programming. Combined with the computer graphicstechnology, the visual simulation of cold roll-forming is completed and the system is established.By analyzing common channel steel, the process is shown and explained including theory method, modeland result display. So the simulation system is already a kind of mature and effective tool toanalyze the process of cold roll forming.展开更多
The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation...The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.展开更多
A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming par...A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated.展开更多
AZ91 magnesium alloy was prepared by spray forming. The spray-deposited alloy was subsequently hot-rolled with a 80% reduction at 350 ℃. The microstructural features of the as-spray-deposited and hot-rolled alloy wer...AZ91 magnesium alloy was prepared by spray forming. The spray-deposited alloy was subsequently hot-rolled with a 80% reduction at 350 ℃. The microstructural features of the as-spray-deposited and hot-rolled alloy were examined by optical microscopy, scanning electron microscopy and X-ray diffractometry. The results show that the spray-formed AZ91 magnesium alloy has, compared with the as-cast ingot, a finer microstructure with less intermetallic phase Mg17Al12 dispersed in the matrix due to fast cooling and solidification rates of spray forming process, and, therefore showing excellent workability. It can be hot-rolled with nearly 20% reduction for one pass at lower temperatures (330-360℃), and the total reduction can reach 50% prior to annealing. After proper thermo-mechanical treatment, the spray-formed AZ91 magnesium alloy exhibits outstanding mechanical properties.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
文摘Lightweight design is one of the development trends of the automobile industry. An effective way to achieve lightweight auto bodies is to use AHSS (advanced high strength steel ) for the safety components of automobiles. This study has taken doorsill reinforcements made of martensite AHSS as the object ,and performed research on the AHSS roll forming technologies and prototype development of typical asymmetric open components. By means of finite element analysis (FEA) and simulation,studies have been carried out on the springback and edge wave defects during AHSS roll forming ,and an optimized process design has been achieved. The generation mechanisms of vertical bows ,horizontal cambers, twists,pre-punched hole distortion and cut end flare have been analyzed,and solutions to these defects have been given. In addition,tesing of the roll forming process for AHSS has been conducted and typical samples with required dimensional accuracy have been manufactured. This study has provided technical support for the large-scale application of AHSS.
基金Supported by National Key Technology R&D Program(No.2011BAG03B03)
文摘The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement
基金Supported by the National Natural Science Foundation of China(No.51205004,51475003)Beijing Natural Science Foundation(No.3152010)Beijing Education Committee Science and Technology Program(No.KM201510009004)
文摘The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease.
文摘The finite strip method in structural analysis has been extended, and elastic-plastic large deformation spline finite strip method based on the Updated-Lagrange method (U. L. method) was established to simulate roll forming process of channel section with outer edge. The deformation characteristics of strip was analyzed, and the three-dimensional displacement field, strain field and stress field of deformed strip were got. The calculation example proves that the peak transverse pressing membrane strain is on the corner part of the deformed strip, and the peak longitudinal stretching strain is on the outer edge part of the deformed strip in front of rolls. In addition, the transverse deformation of the deformed strip is principal, and the longitudinal deformation is small.
基金Supported by the National Natural Science Foundation of China(No.51205004)Beijing Natural Science Foundation(No.3164041)the National Key Technology R&D Program(No.2011BAG03B03)
文摘Flexible roll forming is a new roll forming process that produces parts with variable cross sections. This forming process is proposed to meet the demand of weight reduction of automobile industry. In order to study the mechanisms and material flow rules in this new forming process,the finite element mothod( FEM) model of a nine-step flexible roll forming of an ultra-high-strength steel bumper is established based on deep understanding and reasonable simplification of the process.Given that the material model is an important factor that influences the simulation accuracy,three material models which consist of different yield criteria and hardening models are adopted in the FEM models. Sheet thickness and springback amount calculated with three material models are studied comparatively. According to sheet thickness reduction and springback amounts,it is found that the MKi( Mises yield criterion and kinematic hardening law) model's result is larger than MI( Mises yield criterion and isotropic hardening law) model and HI( Hill's yield criterion and isotropic hardening law) model. Therefore,it is concluded that material models do have influences on the flexible roll forming simulation and need to be determined carefully.
基金the National Natural Science Foundation of China(Grant No.52275379).
文摘Deformation allocation is an important factor that affects 720°curling forming from copper-coated steel strips to double-walled brazed tubes(DWBTs).In this study,four schemes of deformation allocation,considering different weights of the total feed distance,are proposed,and a 3D finite element(FE)model of the multi-pass roll forming process for DWBT is developed and verified to investigate the cross-sectional evolution and deformation features.The results show the following.(i)In the 720°curling forming process from the steel strip into double-walled tubes,the curvature of the formed circular arc initially increases and then remains stable with roll forming,and the inner and outer tubes of the DWBT are formed in the third and fifth forming passes.Size forming can eliminate the gap between the double walls and improve the overall roundness.(ii)For different deformation allocations,the cross-sectional profiles of the roll-formed parts exhibit a discrepancy,and the deformation amount varies with the roll-forming process.The deformation amount in Scheme three is the maximum,and the cross-sectional profile deviates significantly from the ideal shape and fails to form a DWBT,which indicates that the deformation allocation is unsuitable.(iii)The roundness of the outer tube is better than that of the inner tube.Therefore,the roundness of the inner tube is the key to restricting the forming accuracy of the DWBT.Compared with Schemes one and two,Scheme four with a linear allocation of the total feed distance exhibits the best roundness,and the deformation allocation is reasonable;i.e.,when the contact points between the rollers and steel strip are in a straight line,the roundness of the DWBT is in good agreement with the ideal condition.
文摘Increasing geometrical accuracy at open ends of the roll-formed part is difficult due to the release of residual stress after end cutting.In this work,a typical rail with a high requirement of geometry accuracy was selected to realize the behaviors of residual stress release.First,residual stress distribution after roll forming is discussed in detail by finite element analysis with ABAQUS.In addition,two different approaches are proposed to check their capabilities in reducing the residual stress level.The results indicate that both additional rolling passes and multiple bending processes are beneficial to reducing uniform residual stress.
基金Item Sponsored by National Natural Science Foundation of China (50605043)National Basic Research Program of China (2005CB724103)
文摘Cold roll forming is a high production but complex metal forming process under the conditions of coupled effects with multi-factor. A new booting finite element method (FEM) model using the updated Lagrangian (IAL) method for multistand roll forming process is developed and validated. Compared with most of the literatures related to roll forming simulation, the new model can take the roll rotation into account and is well suited for simulating multistand roll forming. Based on the model, the process of a channel section with outer edge formed with twelve passes is simulated and the sensitivity analysis of parameters is conducted with orthogonal design combined FEM model. It is found that the multistand roll forming process can be efficiently analyzed by the new booting model, and sensitivity analysis shows that the yield strength plays an important role in controlling the quality of the products.
文摘The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel.
基金The authors are grateful to the National Natural Science Foundation of China(NSFC)(Nos.50905001 and 51074204)Beijing Municipal Natural Science Foundation(No.3112010)+1 种基金Beijing Municipal Natural Science Foundation-Beijing Municipal Education Commission(No.KZ201910009011)for their financial support.Also,thanks are given to the Beijing Youth Talent Support Program(No.2014000026833ZK12)Yujie Talent Support Program of North China University of Technology(No.18XN154-005).
文摘Roll forming is a sheet metal forming process,which can form the profiles gradually to improve the formability of Q&P980 steel.The plastic deformation mechanism of roll forming was expounded by analysing the stress and strain distribution at the comer of a hat-type profile when the Q&P980 steel sheet passed through a series of continuous stands.And the plastic deformation mainly accumulated when the sheet metal was not in contact with the rolls.A simple mathematical model was derived by considering the longitudinal bending strain and the geometrical relationships of forming parameters,to analyse the longitudinal strain development in the deformation process.In addition,the roll forming experiments on hat-type profile parts of Q&P980 steel were carried out,and the theoretical analysis and simulation results are consistent with the experimental results.
基金the National Natural Science Foundation of China (No. 50605043)
文摘Multi-stand roll forming is a process that has very complicated deformation behaviour and shows significant nonlinearity.In this paper, the sensitivity analysis of parameters for multi-stand roll forming was performed via a new booting finite element method(FEM) model.Compared with the most of simulation, the new model is more consistent with production process and can account for the effects of roll rotating speed.Based on the model, the process of an open section channel formed with 10 passes was simulated and the sensitivity analysis was conducted with orthogonal experiment design combined FEM model.The multi-stand roll forming process can be efficiently analyzed by the new booting model.And sensitivity analysis shows the hardening exponent plays an important role in controlling the quality of the products.
文摘Design of forming dies and whole process of simulation of cold rolling involutes spline can be realized by using of CAD software of PRO-E and CAE software of DEFORM-3D. Software DEFORM-3D provides an automatic and optimized remeshing function, especially for the large deformation. In order to use this function sufficiently, simulation of cold rolling involutes spline can be implemented indirectly. The relationship between die and workpiece, forming force and characteristic of deformation in the forming process of cold rolling involutes spline are analyzed and researched. Meanwhile, reliable proofs for the design of dies and deforming equipment are provided.
基金supported by National Natural Science Foundation of China(Grant Nos.5107512450975229)Doctoral Foundation of Henan University of Science and Technology of China(Grant No.09001331)
文摘The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating,the theory of roller design,and the stress and strain field analysis of cold roll-beating,etc.However,the research on law of metal flow in the forming process of involute spline cold roll-beating is rare.According to the principle of involute spline cold roll-beating,the contact model between the rollers and the spline shaft blank in the process of cold roll-beating forming is established,and the theoretical analysis of metal flow in the cold roll-beating deforming region is proceeded.A finite element model of the spline cold roll-beating process is established,the formation mechanism of the involute spline tooth profile in cold roll-beating forming process is studied,and the node flow tracks of the deformation area are analyzed.The experimental research on the metal flow of cold roll-beating spline is conducted,and the metallographic structure variation,grain characteristics and metal flow line of the different tooth profile area are analyzed.The experimental results show that the particle flow directions of the deformable bodies in cold roll-beating deformation area are determined by the minimum moving resistance.There are five types of metal flow rules of the deforming region in the process of cold roll-beating forming.The characteristics of involute spline cold roll-beating forming are given,and the forming mechanism of involute spline cold roll-beating is revealed.This paper researches the law of metal flow in the forming process of involute spline cold roll-beating,which provides theoretical supports for solving the tooth profile forming quality problem.
基金This project is supported by Provincial Natural Science Foundation of Hebei (No.502214).
文摘To simulate the process of cold roll-forming process, a new method isadopted. The theoretical foundation of this method is an elastic-plastic large deformation splinefinite strip method based on object-oriented programming. Combined with the computer graphicstechnology, the visual simulation of cold roll-forming is completed and the system is established.By analyzing common channel steel, the process is shown and explained including theory method, modeland result display. So the simulation system is already a kind of mature and effective tool toanalyze the process of cold roll forming.
基金support given by the National Natural Science Foundation of China(No.51275202)
文摘The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.
文摘A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated.
基金Project(50271076) supported by the National Natural Science Foundation of China
文摘AZ91 magnesium alloy was prepared by spray forming. The spray-deposited alloy was subsequently hot-rolled with a 80% reduction at 350 ℃. The microstructural features of the as-spray-deposited and hot-rolled alloy were examined by optical microscopy, scanning electron microscopy and X-ray diffractometry. The results show that the spray-formed AZ91 magnesium alloy has, compared with the as-cast ingot, a finer microstructure with less intermetallic phase Mg17Al12 dispersed in the matrix due to fast cooling and solidification rates of spray forming process, and, therefore showing excellent workability. It can be hot-rolled with nearly 20% reduction for one pass at lower temperatures (330-360℃), and the total reduction can reach 50% prior to annealing. After proper thermo-mechanical treatment, the spray-formed AZ91 magnesium alloy exhibits outstanding mechanical properties.