With specially designed hot rolling test equipment,the surface deterioration process of hot rolling mill rolls can be simulated and representative samples were obtained.Thus a series of micro-analyses can be done onto...With specially designed hot rolling test equipment,the surface deterioration process of hot rolling mill rolls can be simulated and representative samples were obtained.Thus a series of micro-analyses can be done onto the sample's worn surface,including wear loss,worn surface morphology,wear mode,oxidation and other influences from environment conditions.A leading study has been done with a high chromium cast iron to show the rolling test conditions and the methodologies of follow-up investigations for all the above-mentioned micro-analyses.Primary results have shown that high chromium iron roll may undergo complex degrading mechanism,and most of them can be investigated with the help of this research method-展开更多
For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theo...For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed.展开更多
Flexible perovskite solar cells(FPSCs)are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatibl...Flexible perovskite solar cells(FPSCs)are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatible with roll to roll(R2R)process for mass production.At present,deformable and lightweight FPSCs have been successfully prepared and applied as power supply by integrating with different wearable and portable electronics,which opens a niche market for photovoltaics.In this mini review,we will introduce the recent progress of FPSCs from the aspect of small-area flexible devices,R2R processed devices with large scale and emerging flexible cells with deformability and stretchability.Finally,conclusion and outlook are provided.展开更多
The cooling process following hot rolling has a significant effect on the shape quality of a hot-rolled strip.The temperature and stress fields in the cooling process for a 14 mm thick strip with yield strength of 500...The cooling process following hot rolling has a significant effect on the shape quality of a hot-rolled strip.The temperature and stress fields in the cooling process for a 14 mm thick strip with yield strength of 500 MPa grade were analyzed by the finite element method and actual test data,and the relationship between residual stress and shape defects was described.Subsequently,the small-crown rolling process and the coil slow cooling process were investigated.The results indicate that these processes improved the shape quality of the final product significantly.展开更多
The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite...The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite morphologies were found with different annealing temperatures. The Ti–15Ta–15Zr alloy exhibits almost perfect shape memory recovery strain of 6% after annealing at 973 K for 0.5 h.展开更多
To improve the straight edge seam defect on hot-rolled steel plates,the deformation and temperature distribution of rectangular slabs and chamfered slabs during rolling in a pilot rolling experiment were analyzed in d...To improve the straight edge seam defect on hot-rolled steel plates,the deformation and temperature distribution of rectangular slabs and chamfered slabs during rolling in a pilot rolling experiment were analyzed in detail using the finite element method.The results showed that the crease formed on the lateral side near the edge of the plate as a result of uneven stress during broadside rolling.The creases rose to the surface with unrestricted spread and evolved into a straight edge seam during the subsequent straight rolling.To eliminate the straight edge seam defect,chamfered slabs were developed and investigated for rolling.The use of the chamfered slabs provided two advantages for rolling:the distribution of the temperature near the edge was ameliorated,and the deformation shape was improved by the chamfered shape.As a result,the risk of forming a straight edge seam defect was reduced by the use of a chamfered slab.展开更多
Considering the effect of work roll shifting on roll temperature field,a finite difference method of PR format for roll temperature field was presented,which can meet the requirements of accuracy and speed of online c...Considering the effect of work roll shifting on roll temperature field,a finite difference method of PR format for roll temperature field was presented,which can meet the requirements of accuracy and speed of online calculation.The step-by-step accumulation method was used to simulate the roll temperature field and thermal crown,and the evolution of roll thermal crown in a rolling campaign was studied.And then,the effects of strip width,rolling rhythm and work roll shifting on roll thermal crown were analyzed.It is found that work roll shifting can disperse the thermal expansion of the roll body especially the edge to make roll thermal contour uniform.The effect of work roll shifting on roll thermal crown is mainly concentrated in regions around twice of roll shifting stroke,and the change range of roll thermal crown is±30μm or so in the same roll body location.展开更多
Both batch-to-batch(B2 B)and roll-to-roll(R2 R)processes can be used for mass production of graphene films.Because of the simplicity of equipment,the B2 B process is more commonly used in laboratory research.In contra...Both batch-to-batch(B2 B)and roll-to-roll(R2 R)processes can be used for mass production of graphene films.Because of the simplicity of equipment,the B2 B process is more commonly used in laboratory research.In contrast,the R2 R process is more industrially preferred because it is easier to automate and more compatible with the subsequent transfer process.Up to now,the research on R2 R process has mainly focused on the design of the reactor or the loading configuration,but the in-depth understanding on the growth kinetics is lack.In this paper,we investigated the evolution of graphene growth and revealed that the graphene domain density grown by the R2 R process was larger than that by the B2 B process with the same reaction parameters,which was attributed to different reaction profiles between the two processes.Furthermore,the defective graphene could be healed with elongated reaction time.With the optimized R2 R process,graphene films with quality comparable to those grown by conventional B2 B process could be achieved.Our research will promote the development of the mass-production technique for graphene films.展开更多
文摘With specially designed hot rolling test equipment,the surface deterioration process of hot rolling mill rolls can be simulated and representative samples were obtained.Thus a series of micro-analyses can be done onto the sample's worn surface,including wear loss,worn surface morphology,wear mode,oxidation and other influences from environment conditions.A leading study has been done with a high chromium cast iron to show the rolling test conditions and the methodologies of follow-up investigations for all the above-mentioned micro-analyses.Primary results have shown that high chromium iron roll may undergo complex degrading mechanism,and most of them can be investigated with the help of this research method-
基金Project(2011BAF15B00)supported by the National Science and Technology Support Plan of ChinaProject(E2011203004)supported by the Hebei Provincial Natural Science Iron and Steel Joint Research Fund Program,China
文摘For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed.
文摘Flexible perovskite solar cells(FPSCs)are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatible with roll to roll(R2R)process for mass production.At present,deformable and lightweight FPSCs have been successfully prepared and applied as power supply by integrating with different wearable and portable electronics,which opens a niche market for photovoltaics.In this mini review,we will introduce the recent progress of FPSCs from the aspect of small-area flexible devices,R2R processed devices with large scale and emerging flexible cells with deformability and stretchability.Finally,conclusion and outlook are provided.
基金Item Sponsored by National Natural Science Foundation of China(U1460101)
文摘The cooling process following hot rolling has a significant effect on the shape quality of a hot-rolled strip.The temperature and stress fields in the cooling process for a 14 mm thick strip with yield strength of 500 MPa grade were analyzed by the finite element method and actual test data,and the relationship between residual stress and shape defects was described.Subsequently,the small-crown rolling process and the coil slow cooling process were investigated.The results indicate that these processes improved the shape quality of the final product significantly.
基金Project support by the National Natural Science Foundation of China(Grant No.51501049)China Postdoctoral Science Foundation(Grant No.2015M571405)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.20163)
文摘The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite morphologies were found with different annealing temperatures. The Ti–15Ta–15Zr alloy exhibits almost perfect shape memory recovery strain of 6% after annealing at 973 K for 0.5 h.
基金Item Sponsored by National Natural Science Foundation of China(51204059)
文摘To improve the straight edge seam defect on hot-rolled steel plates,the deformation and temperature distribution of rectangular slabs and chamfered slabs during rolling in a pilot rolling experiment were analyzed in detail using the finite element method.The results showed that the crease formed on the lateral side near the edge of the plate as a result of uneven stress during broadside rolling.The creases rose to the surface with unrestricted spread and evolved into a straight edge seam during the subsequent straight rolling.To eliminate the straight edge seam defect,chamfered slabs were developed and investigated for rolling.The use of the chamfered slabs provided two advantages for rolling:the distribution of the temperature near the edge was ameliorated,and the deformation shape was improved by the chamfered shape.As a result,the risk of forming a straight edge seam defect was reduced by the use of a chamfered slab.
基金Sponsored by National Natural Science Foundation of China(51205336)Fujian Natural Science Foundation of China(2013J05086)
文摘Considering the effect of work roll shifting on roll temperature field,a finite difference method of PR format for roll temperature field was presented,which can meet the requirements of accuracy and speed of online calculation.The step-by-step accumulation method was used to simulate the roll temperature field and thermal crown,and the evolution of roll thermal crown in a rolling campaign was studied.And then,the effects of strip width,rolling rhythm and work roll shifting on roll thermal crown were analyzed.It is found that work roll shifting can disperse the thermal expansion of the roll body especially the edge to make roll thermal contour uniform.The effect of work roll shifting on roll thermal crown is mainly concentrated in regions around twice of roll shifting stroke,and the change range of roll thermal crown is±30μm or so in the same roll body location.
基金supported by the National Natural Science Foundation of China(51772043,51802036)Shenzhen Science and Technology Program((2021)105)。
文摘Both batch-to-batch(B2 B)and roll-to-roll(R2 R)processes can be used for mass production of graphene films.Because of the simplicity of equipment,the B2 B process is more commonly used in laboratory research.In contrast,the R2 R process is more industrially preferred because it is easier to automate and more compatible with the subsequent transfer process.Up to now,the research on R2 R process has mainly focused on the design of the reactor or the loading configuration,but the in-depth understanding on the growth kinetics is lack.In this paper,we investigated the evolution of graphene growth and revealed that the graphene domain density grown by the R2 R process was larger than that by the B2 B process with the same reaction parameters,which was attributed to different reaction profiles between the two processes.Furthermore,the defective graphene could be healed with elongated reaction time.With the optimized R2 R process,graphene films with quality comparable to those grown by conventional B2 B process could be achieved.Our research will promote the development of the mass-production technique for graphene films.