A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is impro...A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is improved by a method based on the Paris formula and the Foreman formula allowing the establishment of different degradation stages.The remaining useful life of rolling element bearings can be predicted by the adjusted model with inputs of physical data and operating status information.The late operating trend is predicted by the use of the particle filter algorithm.The rolling bearing full life experimental data validate the proposed method.Further,the prediction result is compared with the single SSM and the Gamma model,and the results indicate that the predicted accuracy of the proposed method is higher with better practicability.展开更多
文摘A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is improved by a method based on the Paris formula and the Foreman formula allowing the establishment of different degradation stages.The remaining useful life of rolling element bearings can be predicted by the adjusted model with inputs of physical data and operating status information.The late operating trend is predicted by the use of the particle filter algorithm.The rolling bearing full life experimental data validate the proposed method.Further,the prediction result is compared with the single SSM and the Gamma model,and the results indicate that the predicted accuracy of the proposed method is higher with better practicability.