The thermal scratch significantly influences the surface quality of the stainless steel in cold strip rolling. The thermal scratch has a close relation to the rolling parameters, the rolls surface and the emulsions us...The thermal scratch significantly influences the surface quality of the stainless steel in cold strip rolling. The thermal scratch has a close relation to the rolling parameters, the rolls surface and the emulsions used in rolling. In order to explain the thermal scratch on the strip surface, the cold roiling process of SUS430 stainless steel strip was investigated in the laboratory. The thermal scratch defect occurs frequently in the second rolling pass (maximum reduction in height is 32.3 ~), especially on the lower surface of strips. When concentration and temperature of the emulsion are the same, the thermal scratch on the surface o{ the strip is aggravated with increasing the roll surface roughness. With the same roll surface roughness and emulsion concentration, the thermal scratch is obviously more severe at an emulsion temperature of 63 ℃ than 55 ℃. With the same roll surface roughness and emulsion tempera- ture, the thermal scratch is distinctly weaker at the emulsion concentration of 6 % than that of 3 %.展开更多
基金Sponsored by National Natural Science Foundation of China(51174057,51274062)National High-technology Researchand Development Program of China(2012AA03A503)
文摘The thermal scratch significantly influences the surface quality of the stainless steel in cold strip rolling. The thermal scratch has a close relation to the rolling parameters, the rolls surface and the emulsions used in rolling. In order to explain the thermal scratch on the strip surface, the cold roiling process of SUS430 stainless steel strip was investigated in the laboratory. The thermal scratch defect occurs frequently in the second rolling pass (maximum reduction in height is 32.3 ~), especially on the lower surface of strips. When concentration and temperature of the emulsion are the same, the thermal scratch on the surface o{ the strip is aggravated with increasing the roll surface roughness. With the same roll surface roughness and emulsion concentration, the thermal scratch is obviously more severe at an emulsion temperature of 63 ℃ than 55 ℃. With the same roll surface roughness and emulsion tempera- ture, the thermal scratch is distinctly weaker at the emulsion concentration of 6 % than that of 3 %.