The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation, which can be ...The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation, which can be used for general flatness control. However, it does not work for some special rolling processes, such as the elimination of ultra single side edge-waves and the prevention of strip break due to tilting roll control overshooting. For the purpose of solving these problems, the influences of non-symmetrical work roll bending and intermediate roll bending on flatness control were analyzed by studying efficiencies of them. Moreover, impacts of two kinds of non-symmetrical roll bending control on the pressure distribution between rolls were studied theoretically. A non-symmetrical work roll bending model was developed by theoretical analysis in accordance with practical conditions. The model was applied to the revamp of a 1250 6-H reversible universal crown mill (UCM) cold mill. Theoretical study and practical applications show that the coordination utilization of the non-symmetrical work roll bending control and tilting roll control was effective in flatness control when there appeared bad strip single side edge waves, especially when the incoming strip was with a wedge shape. In addition, the risk of strip break due to tilting control overshooting could be reduced. Furthermore, the non-symmetrical roll bending control can reduce the extent of uneven distribution of pressure between rolls caused by intermediate roll shifting in flatness control and slow down roll wear. The non-symmetrical roll bending control technology has important theoretical and practical significance to better flatness control.展开更多
The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the pres...The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the present study, bionic non-smooth surfaces are used in roll surface design, and roll models with convex non-smooth surfaces are developed. The rolling wear of non-smooth roll in steel rolling is simulated by the FEM software-ANSYS. The equivalent stress, the node friction stress, and the node contact pressure between the roll and the rolling piece are calculated; and the anti-wear mechanism is analyzed.展开更多
A new roll shifting strategy with varying stroke and varying step was investigated,Two characteristic parameters including cat ear height and gap contour smoothness were introduced to assess the effect of shifting str...A new roll shifting strategy with varying stroke and varying step was investigated,Two characteristic parameters including cat ear height and gap contour smoothness were introduced to assess the effect of shifting strategy on roll wear,and the relation between characteristic parameters and shifting strategy was established.Both varying stroke and varying step can reduce cat ear height and gap contour smoothness,so the shifting strategy with varying stroke and varying step is better than the one with either varying stroke or varying step,Based on the effect of shifting control parameters on characteristic parameters of roll wear,the selection principle of these shifting control parameters was gained.A case study was conducted to validate the proposed roll shifting strategy,reducing uncontrollable quartic loading gap contour,improving strip profile and extending rolling length of a rolling campaign.展开更多
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat...A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.展开更多
A great deal of research and practical production indicated that a perfectshape control system needs a precise prediction model of roll wear. According to the practical wearcurve of work roll in Angang ASP1700 hot str...A great deal of research and practical production indicated that a perfectshape control system needs a precise prediction model of roll wear. According to the practical wearcurve of work roll in Angang ASP1700 hot strip mill, which was measured by a roll-profilemeter, themodel of wear curve caused by one single strip was established. The prediction of work-roll wear wasachieved by combining Fortran language and practical technology parameters. The calculated resultsagreed well with the measured.展开更多
A multi-objective optimization approach for the roll shifting strategy in cross rolling campaigns of hot strip mills is presented. The effect of different roll shifting strategies on roll wear contour is studied by nu...A multi-objective optimization approach for the roll shifting strategy in cross rolling campaigns of hot strip mills is presented. The effect of different roll shifting strategies on roll wear contour is studied by numerical simulation, and two evaluation indexes ,namely body smoothness and edge smoothness, are proposed. The average body smoothness and average rolling edge smoothness of all strips in a rolling campaign are taken as the objective functions, the shifting positions of all wide strips as the decision variables, and the multi-objective method of NSGA-II as the optimizer. Thus a multi-objective optimization model for the roll shifting strategy is built. The simulation results show that work roll shifting can make wear contour smooth,and a dish-shaped wear contour without severe local wear can be achieved by the roll shifting strategy with varying stroke. Optimization experimentation shows that by means of NSGA-II,a good Pareto-optimal front can be obtained, which suggests a series of alternative solutions for roll shifting strategy optimization. The experimentation also shows that there is a conflict between the two objectives. Finally, application cases confirm the feasibility of the multi-objective approach, which can improve the strip profile ,reduce edge waves and extend the rolling miles of a rolling campaign.展开更多
The key element in the proper performance of a rolling mill is the careful planning of the rolls operational conditions, since this factor constitutes the restricting element in the manufacturing process. In the artic...The key element in the proper performance of a rolling mill is the careful planning of the rolls operational conditions, since this factor constitutes the restricting element in the manufacturing process. In the article, a collection of operation and research steel strips hot-rolling mill information was presented, which was processed based on the advanced computer programmes for rolls grinders. The research outcomes were produced, presenting the application of eddy currents to detect materials flaws in metallurgical mill rolls.展开更多
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati...The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.展开更多
A novel fullerene-styrene-maleic anhydride copolymer is reported. TEM analyses shows it is water- soluble nanoball of average diameter of about 83 nm. The tribological behavior is evaluated by foul-ball machine. It w...A novel fullerene-styrene-maleic anhydride copolymer is reported. TEM analyses shows it is water- soluble nanoball of average diameter of about 83 nm. The tribological behavior is evaluated by foul-ball machine. It was found that addition of fullerene copolymer to base stock (2%triethanolamine aqueous solution)resulted in a raise in load-carrying ability(F value)from 130 N to maximum 480 N, and a reduction in coefficient of friction from 0.235 to minimum 0. 063. SEM analyses indicates that the wear scare obtained with fullerene copolymer exhibited mild scratches, while sharp grooving and serious pull-out phenomnon were observed in the presence of base stock without additive .The improvements in friction, wear and load-carrying capacity are probably due to the presence of fullerene copolymer nanoballs, which may act as molecule ball bearings, which in turn lead to elastic rolling lubrication.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50534020)
文摘The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation, which can be used for general flatness control. However, it does not work for some special rolling processes, such as the elimination of ultra single side edge-waves and the prevention of strip break due to tilting roll control overshooting. For the purpose of solving these problems, the influences of non-symmetrical work roll bending and intermediate roll bending on flatness control were analyzed by studying efficiencies of them. Moreover, impacts of two kinds of non-symmetrical roll bending control on the pressure distribution between rolls were studied theoretically. A non-symmetrical work roll bending model was developed by theoretical analysis in accordance with practical conditions. The model was applied to the revamp of a 1250 6-H reversible universal crown mill (UCM) cold mill. Theoretical study and practical applications show that the coordination utilization of the non-symmetrical work roll bending control and tilting roll control was effective in flatness control when there appeared bad strip single side edge waves, especially when the incoming strip was with a wedge shape. In addition, the risk of strip break due to tilting control overshooting could be reduced. Furthermore, the non-symmetrical roll bending control can reduce the extent of uneven distribution of pressure between rolls caused by intermediate roll shifting in flatness control and slow down roll wear. The non-symmetrical roll bending control technology has important theoretical and practical significance to better flatness control.
文摘The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the present study, bionic non-smooth surfaces are used in roll surface design, and roll models with convex non-smooth surfaces are developed. The rolling wear of non-smooth roll in steel rolling is simulated by the FEM software-ANSYS. The equivalent stress, the node friction stress, and the node contact pressure between the roll and the rolling piece are calculated; and the anti-wear mechanism is analyzed.
基金Project(50974039) supported by the National Natural Science Foundation of China
文摘A new roll shifting strategy with varying stroke and varying step was investigated,Two characteristic parameters including cat ear height and gap contour smoothness were introduced to assess the effect of shifting strategy on roll wear,and the relation between characteristic parameters and shifting strategy was established.Both varying stroke and varying step can reduce cat ear height and gap contour smoothness,so the shifting strategy with varying stroke and varying step is better than the one with either varying stroke or varying step,Based on the effect of shifting control parameters on characteristic parameters of roll wear,the selection principle of these shifting control parameters was gained.A case study was conducted to validate the proposed roll shifting strategy,reducing uncontrollable quartic loading gap contour,improving strip profile and extending rolling length of a rolling campaign.
基金Projects(50974039,50634030) supported by the National Natural Science Foundation of China
文摘A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.
文摘A great deal of research and practical production indicated that a perfectshape control system needs a precise prediction model of roll wear. According to the practical wearcurve of work roll in Angang ASP1700 hot strip mill, which was measured by a roll-profilemeter, themodel of wear curve caused by one single strip was established. The prediction of work-roll wear wasachieved by combining Fortran language and practical technology parameters. The calculated resultsagreed well with the measured.
文摘A multi-objective optimization approach for the roll shifting strategy in cross rolling campaigns of hot strip mills is presented. The effect of different roll shifting strategies on roll wear contour is studied by numerical simulation, and two evaluation indexes ,namely body smoothness and edge smoothness, are proposed. The average body smoothness and average rolling edge smoothness of all strips in a rolling campaign are taken as the objective functions, the shifting positions of all wide strips as the decision variables, and the multi-objective method of NSGA-II as the optimizer. Thus a multi-objective optimization model for the roll shifting strategy is built. The simulation results show that work roll shifting can make wear contour smooth,and a dish-shaped wear contour without severe local wear can be achieved by the roll shifting strategy with varying stroke. Optimization experimentation shows that by means of NSGA-II,a good Pareto-optimal front can be obtained, which suggests a series of alternative solutions for roll shifting strategy optimization. The experimentation also shows that there is a conflict between the two objectives. Finally, application cases confirm the feasibility of the multi-objective approach, which can improve the strip profile ,reduce edge waves and extend the rolling miles of a rolling campaign.
文摘The key element in the proper performance of a rolling mill is the careful planning of the rolls operational conditions, since this factor constitutes the restricting element in the manufacturing process. In the article, a collection of operation and research steel strips hot-rolling mill information was presented, which was processed based on the advanced computer programmes for rolls grinders. The research outcomes were produced, presenting the application of eddy currents to detect materials flaws in metallurgical mill rolls.
基金Project(U1234211)supported of the National Natural Science Foundation of ChinaProject(20120009110020)supported by the Specialized Research Fund for Ph.D. Programs of Foundation of Ministry of Education of ChinaProject(SHGF-11-32)supported the Scientific and Technological Innovation Project of China Shenhua Energy Company Limited
文摘The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.
基金This project is supported by National Natural Science Foundation of China (29674010) and State Key Lab of Plastic Forming Simula
文摘A novel fullerene-styrene-maleic anhydride copolymer is reported. TEM analyses shows it is water- soluble nanoball of average diameter of about 83 nm. The tribological behavior is evaluated by foul-ball machine. It was found that addition of fullerene copolymer to base stock (2%triethanolamine aqueous solution)resulted in a raise in load-carrying ability(F value)from 130 N to maximum 480 N, and a reduction in coefficient of friction from 0.235 to minimum 0. 063. SEM analyses indicates that the wear scare obtained with fullerene copolymer exhibited mild scratches, while sharp grooving and serious pull-out phenomnon were observed in the presence of base stock without additive .The improvements in friction, wear and load-carrying capacity are probably due to the presence of fullerene copolymer nanoballs, which may act as molecule ball bearings, which in turn lead to elastic rolling lubrication.