In gear transmission,temperature rise has a non-negligible impact on the accuracy,noise and transmission efficiency.However,there is no relevant research on the temperature rise of the anti-backlash single-roller enve...In gear transmission,temperature rise has a non-negligible impact on the accuracy,noise and transmission efficiency.However,there is no relevant research on the temperature rise of the anti-backlash single-roller enveloping hourglass worm(ASEHW)gear.To solve this problem,based on tribology principle and Hertz contact theory,the thermal power calculation method of the ASEHW gear was proposed for the first time and thermal analysis was carried out by Ansys software.The bulk temperature of the ASEHW gear under four different rotating speed(300 r/min,600 r/min,900 r/min,1200 r/min)is calculated.The main factors causing temperature rise of the ASEHW gear are analyzed theoretically.Meanwhile,an experimental study is performed to verify the simulation results and validate the theory methods.The theory presented in this paper provides a solution for the thermal power calculation of ASEHW gear.This research provides a theoretical basis for further optimization of ASEHW gear.展开更多
基金National Natural Science Foundation of China(Grant No.51875479)Innovation Fund of Postgraduate of Xihua University,China(Grant No.ycjj2019040).
文摘In gear transmission,temperature rise has a non-negligible impact on the accuracy,noise and transmission efficiency.However,there is no relevant research on the temperature rise of the anti-backlash single-roller enveloping hourglass worm(ASEHW)gear.To solve this problem,based on tribology principle and Hertz contact theory,the thermal power calculation method of the ASEHW gear was proposed for the first time and thermal analysis was carried out by Ansys software.The bulk temperature of the ASEHW gear under four different rotating speed(300 r/min,600 r/min,900 r/min,1200 r/min)is calculated.The main factors causing temperature rise of the ASEHW gear are analyzed theoretically.Meanwhile,an experimental study is performed to verify the simulation results and validate the theory methods.The theory presented in this paper provides a solution for the thermal power calculation of ASEHW gear.This research provides a theoretical basis for further optimization of ASEHW gear.