For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle ...For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle size of 30-50 nm with increased crystallinity and higher specific surface area, predominantly mesoporous and with improved pore diameter distribution. Then, AC nano-particles were incorporated with MnO2 or bismuth-doped MnO2 nano-particles synthesized by sol-gel methods to prepare nano-composite electrode materials for studying their electrochemical performance. The AC nano-particles combined with 10 wt.% bismuth-doped MnO2 nano-particles were found to possess excellent electrochemical property with specific capacitance up to 308 F/g and without obvious attenuation with increasing current. Our method seems to ooen a new way to imorove AC based electrode materials used for clean energy such as suner capacitors.展开更多
基金Shanghai Nano-technology Special Fund,Grant No.05nm05027Shanghai Education Fund,Grant No.05EE09.
文摘For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle size of 30-50 nm with increased crystallinity and higher specific surface area, predominantly mesoporous and with improved pore diameter distribution. Then, AC nano-particles were incorporated with MnO2 or bismuth-doped MnO2 nano-particles synthesized by sol-gel methods to prepare nano-composite electrode materials for studying their electrochemical performance. The AC nano-particles combined with 10 wt.% bismuth-doped MnO2 nano-particles were found to possess excellent electrochemical property with specific capacitance up to 308 F/g and without obvious attenuation with increasing current. Our method seems to ooen a new way to imorove AC based electrode materials used for clean energy such as suner capacitors.