Background:In a sprint cross-country(XC)ski competition,the difference in recovery times separating the first and the second semi-final(SF)heats from the final(F)may affect performance.The aim of the current study was...Background:In a sprint cross-country(XC)ski competition,the difference in recovery times separating the first and the second semi-final(SF)heats from the final(F)may affect performance.The aim of the current study was to compare the effects of longer vs.shorter recovery periods prescribed between the 3 knock-out races of a simulated sprint XC ski competition involving a prologue(P),quarter-final(QF),SF,and F.Methods:Eleven well-trained XC ski athletes completed 2 simulated sprint XC ski competitions on a treadmill involving 4×883-m roller-ski bouts at a 4°incline using the gear 3 ski-skating sub-technique.The first 3 bouts were completed at a fixed speed(PFIX,QFFIX,and SFFIX)corresponding to~96%of each individual’s previously determined maximal effort.The final bout was performed as a self-paced sprint time trial(FSTT).Test conditions differed by the time durations prescribed between the QFFIX,SFFIX,and FSTT,which simulated real-world XC ski competition conditions using maximum(MAX-REC)or minimum(MIN-REC)recovery periods.Results:The FSTT was completed 5.4±5.5 s faster(p=0.009)during MAX-REC(179.2±18.1 s)compared to MIN-REC(184.6±20.0 s),and this was linked to a significantly higher power output(p=0.010)and total metabolic rate(p=0.009).The pre FSTT blood lactate(BLa)concentration was significantly lower during MAX-REC compared to MIN-REC(2.5±0.8 mmol/L vs.3.6±1.6 mmol/L,respectively;p=0.027),and the pre-to-post FSTT increase in BLa was greater(8.8±2.1 mmol/L vs.7.1±2.3 mmol/L,respectively;p=0.024).No other differences for MAX-REC vs.MIN-REC reached significance(p>0.05).Conclusion:Performance in a group of well-trained XC skiers is negatively affected when recovery times between sprint heats are minimized which,in competition conditions,would occur when selecting the last QF heat.This result is combined with a higher pre-race BLa concentration and a reduced rise in BLa concentration under shorter recovery conditions.These findings may help inform decision making when XC skiers are faced with selecting a QF heat within a sprint competition.展开更多
Purpose:This study aimed to compare biomechanical aspects of a novel"running"diagonal stride(DSRUN)with"conventional"diagonal stride(DSCONV)skiing techniques performed at high speed.Methods:Ten eli...Purpose:This study aimed to compare biomechanical aspects of a novel"running"diagonal stride(DSRUN)with"conventional"diagonal stride(DSCONV)skiing techniques performed at high speed.Methods:Ten elite Italian male junior cross-country skiers skied on a treadmill at 10 km/h and at a 10°incline utilizing both variants of the diagonal stride technique.The 3-dimensional kinematics of the body,poles,and roller skis;the force exerted through the poles and foot plantar surfaces;and the angular motion of the leg joints were determined.Results:Compared to DSCONV,DSRUN demonstrated shorter cycle times(1.05±0.05 s vs.0.75±0.03 s(mean±SD),p<0.001)due to a shorter rolling phase(0.40±0.04 s vs.0.09±0.04 s,p<0.001);greater force applied perpendicularly to the roller skis when they had stopped rolling forward(413±190 N vs.890±170 N,p<0.001),with peak force being attained earlier;prolonged knee extension,with a greater range of motion during the roller ski-stop phase(28°±40 vs.16°±3°,p=0.00014);and more pronounced hip and knee flexion during most of the forward leg swing.The mechanical work performed against friction during rolling was significantly less with DSRUN than with DSCONV(0.04±0.01 J/m/kg vs.0.10±0.02 J/m/kg,p<0.001).Conclusion:Our findings demonstrate that DSRUN is characterize by more rapid propulsion,earlier leg extension,and a greater range of motion of knee joint extension than DSCONV-Further investigations,preferably on snow,should reveal whether DSRUN results in higher acceleration and/or higher peak speed.展开更多
基金supported by a general collaborative grant for winter sport research provided through Mid Sweden University and the?stersund municipality(reference number:2018/1758-500584)。
文摘Background:In a sprint cross-country(XC)ski competition,the difference in recovery times separating the first and the second semi-final(SF)heats from the final(F)may affect performance.The aim of the current study was to compare the effects of longer vs.shorter recovery periods prescribed between the 3 knock-out races of a simulated sprint XC ski competition involving a prologue(P),quarter-final(QF),SF,and F.Methods:Eleven well-trained XC ski athletes completed 2 simulated sprint XC ski competitions on a treadmill involving 4×883-m roller-ski bouts at a 4°incline using the gear 3 ski-skating sub-technique.The first 3 bouts were completed at a fixed speed(PFIX,QFFIX,and SFFIX)corresponding to~96%of each individual’s previously determined maximal effort.The final bout was performed as a self-paced sprint time trial(FSTT).Test conditions differed by the time durations prescribed between the QFFIX,SFFIX,and FSTT,which simulated real-world XC ski competition conditions using maximum(MAX-REC)or minimum(MIN-REC)recovery periods.Results:The FSTT was completed 5.4±5.5 s faster(p=0.009)during MAX-REC(179.2±18.1 s)compared to MIN-REC(184.6±20.0 s),and this was linked to a significantly higher power output(p=0.010)and total metabolic rate(p=0.009).The pre FSTT blood lactate(BLa)concentration was significantly lower during MAX-REC compared to MIN-REC(2.5±0.8 mmol/L vs.3.6±1.6 mmol/L,respectively;p=0.027),and the pre-to-post FSTT increase in BLa was greater(8.8±2.1 mmol/L vs.7.1±2.3 mmol/L,respectively;p=0.024).No other differences for MAX-REC vs.MIN-REC reached significance(p>0.05).Conclusion:Performance in a group of well-trained XC skiers is negatively affected when recovery times between sprint heats are minimized which,in competition conditions,would occur when selecting the last QF heat.This result is combined with a higher pre-race BLa concentration and a reduced rise in BLa concentration under shorter recovery conditions.These findings may help inform decision making when XC skiers are faced with selecting a QF heat within a sprint competition.
文摘Purpose:This study aimed to compare biomechanical aspects of a novel"running"diagonal stride(DSRUN)with"conventional"diagonal stride(DSCONV)skiing techniques performed at high speed.Methods:Ten elite Italian male junior cross-country skiers skied on a treadmill at 10 km/h and at a 10°incline utilizing both variants of the diagonal stride technique.The 3-dimensional kinematics of the body,poles,and roller skis;the force exerted through the poles and foot plantar surfaces;and the angular motion of the leg joints were determined.Results:Compared to DSCONV,DSRUN demonstrated shorter cycle times(1.05±0.05 s vs.0.75±0.03 s(mean±SD),p<0.001)due to a shorter rolling phase(0.40±0.04 s vs.0.09±0.04 s,p<0.001);greater force applied perpendicularly to the roller skis when they had stopped rolling forward(413±190 N vs.890±170 N,p<0.001),with peak force being attained earlier;prolonged knee extension,with a greater range of motion during the roller ski-stop phase(28°±40 vs.16°±3°,p=0.00014);and more pronounced hip and knee flexion during most of the forward leg swing.The mechanical work performed against friction during rolling was significantly less with DSRUN than with DSCONV(0.04±0.01 J/m/kg vs.0.10±0.02 J/m/kg,p<0.001).Conclusion:Our findings demonstrate that DSRUN is characterize by more rapid propulsion,earlier leg extension,and a greater range of motion of knee joint extension than DSCONV-Further investigations,preferably on snow,should reveal whether DSRUN results in higher acceleration and/or higher peak speed.