In order to obtain quantitative relationship between(0002) texture intensity and hot rolling conditions, conventional rolling experiments on AZ31 magnesium alloys were performed with 20%-40% reductions and temperatu...In order to obtain quantitative relationship between(0002) texture intensity and hot rolling conditions, conventional rolling experiments on AZ31 magnesium alloys were performed with 20%-40% reductions and temperatures within the range of 300-500 ℃. Shear strain and equivalent strain distributions along the thickness of the rolled sheets were calculated experimentally using embedded pin in a rolling sheet. Rolling microstructures and textures in the sheet surface and center layers of the AZ31 alloys were measured by optical microscopy(OM), X-ray diffractometry(XRD) and electron back scatter diffraction(EBSD). Effects of the rolling strain, dynamic recrystallization(DRX) and twinning on the texture evolution of the AZ31 alloys were investigated quantitatively. It is found that the highest(0002) basal texture intensities are obtained at a starting rolling temperature of 400 ℃ under the same strain. Strain–temperature dependency of the(0002) texture intensity of the AZ31 alloy is derived.展开更多
Cold-rolled steel sheets in automotive applications require an excellent deep draw ability, which is characterized by the Lankford value (r-value). In this study, a correlation was identified between r-value and pan...Cold-rolled steel sheets in automotive applications require an excellent deep draw ability, which is characterized by the Lankford value (r-value). In this study, a correlation was identified between r-value and pancake-shaped grain flatness which is indicated as the ratio of grain diameter in the rolling direction (RD) and normal direction (ND) of sheets (dr/dn). A mathematical model ( r = e^0.345(dn^1/2-dr^1/2) ) was developed to calculate r-value by the microstructure of steel sheets hot-rolled by compact strip production (CSP). It is shown that the r-value is higher, if the microstructure of steel sheet is of pancake-shaped grains elongated in the rolling direction. The calculated r-value is confirmed to fit exactly to the measured one from the large-scale production.展开更多
Since the 2050 mm hot strip mill was put into operation in 1989, Baosteel has made great achievements in increasing productivity, developing new process technologies and steel products and improving product quality. I...Since the 2050 mm hot strip mill was put into operation in 1989, Baosteel has made great achievements in increasing productivity, developing new process technologies and steel products and improving product quality. In the past 18 years from 1989 to 2007 ,Baosteel has constructed five hot strip mills with a total annual capacity of 19.8 Mt. Indices for technology standards, product categories and steel grades, product quality, both technically and economically, take the lead domestically or reached the world class level. As there are many hot strip mills that expected to be put into operation by the end of 2010 ,the overall annual capacity will exceed 30 Mt ,and the product will cover grain oriented (GO) Si steels and alloyed steels.展开更多
The effects of Gd concentration(0.1,0.3,0.7 wt%)on the microstructure,texture and mechanical properties of rolled and annealed Mg-2Zn-xGd sheets have been investigated aiming to develop low cost and high ductile Mg-Zn...The effects of Gd concentration(0.1,0.3,0.7 wt%)on the microstructure,texture and mechanical properties of rolled and annealed Mg-2Zn-xGd sheets have been investigated aiming to develop low cost and high ductile Mg-Zn-Gd sheets.Dynamic recrystallization,static recrystallization and grain growth during hot rolling process and annealing process were delayed with increase of Gd concentration,leading to fine grain microstructure.The rolled 0.1 wt%Gd sheet showed strong basal texture which remained stable after annealing process and exhibited medium elongation of about 25%.In contrast,the rolled 0.3 wt%Gd sheet had weak basal texture which transformed to non-basal texture with double peaks tilted about±48°to the transverse direction due to the static recrystallization during annealing process.Consequently,the annealed sheets exhibited higher elongation of 40%along the rolling direction and 50%along the transverse direction due to the existence of non-basal texture.It is suggested that the minimum effective concentration for texture randomization in the Mg-2Zn-xGd alloy is about 0.3 wt%.展开更多
Attempts to expand manufacturing capabilities of magnesium-based sheet materials are described.The as-cast ZEK100(Mg-1.2Zn-0.35Zr-0.17Nd,in wt%)magnesium alloy was subjected to hot rolling at temperatures from 350℃to...Attempts to expand manufacturing capabilities of magnesium-based sheet materials are described.The as-cast ZEK100(Mg-1.2Zn-0.35Zr-0.17Nd,in wt%)magnesium alloy was subjected to hot rolling at temperatures from 350℃to 450℃using the laboratory 50 ton reversible mill with preheated rolls to manufacture the 1.5-1.7 mm thick sheet.The rolling temperature affected the sheet properties and an increase in the rolling temperature from 250 to 450℃caused reduction of tensile strength from 257 to 228 MPa ac-companied by a reduction in tensile yield stress from 237 to 185 MPa.At the same time,the alloy elongation increased from 17 to 21%.For the same rolling temperature range,the compressive strength reduced from 418 to 351 MPa.The post-rolling annealing at 450℃led to reduction of both tensile and compressive properties with the largest changes corresponding to the rolling temperature of 350°C.The correlation between the alloy grain size after rolling and the sheet properties was established where a reduction in grain size was accompanied by an increase of both the tensile/compressive strength and yield stress.Based on Hall-Petch relationship and an average grain size the correlation developed in this study may be used as the prediction model for properties of the hot rolled magnesium sheet.The results are discussed in terms of recent developments in magnesium sheet alloys and the vital role played in this process by rare earth elements.展开更多
Twin roll casting method is a promising route to directly produce magnesium alloy strip. It is a rapid solidification process with high temperature gradient combined with thermal flow and rolling deformation in the ca...Twin roll casting method is a promising route to directly produce magnesium alloy strip. It is a rapid solidification process with high temperature gradient combined with thermal flow and rolling deformation in the casting region. As-cast strip with proper microstructure is requested to serve as next rolling feedstock. However the microstructure of as-cast strip is sensitive for casting conditions during the casting process and the as-cast microstructure greatly affects the mechanical properties. In this work, the effect of casting speed, pouring temperature, deformation as well as anneal process on microstructure and mechanical properties were investigated. The results revels that twin-roll casting process can effectively refine the grain size, improve the morphology and distribution states of Mg17Al12. The homogenization treatment time can be shorted for the fine microstructure and lower the cost dramatically for the next forming process.展开更多
150 cm wide AZ31 magnesium alloy sheet was produced by twin roll casting.The sheets of 6 mm thickness were cast. The sheet material was characterized using various techniques including metallography and XRD.The mechan...150 cm wide AZ31 magnesium alloy sheet was produced by twin roll casting.The sheets of 6 mm thickness were cast. The sheet material was characterized using various techniques including metallography and XRD.The mechanical properties were investigated by tensile tests and hardness measurements.The procedures were developed for thermomechanical treatment of cast sheet material.The products of these procedures were characterized and the results were discussed for possible potential applications.展开更多
Twin-roll thin strip casting process combines casting and hot rolling into a single process, in which thermal stress and thermal mechanical stress were involved. Considering the high temperature gradient, the existing...Twin-roll thin strip casting process combines casting and hot rolling into a single process, in which thermal stress and thermal mechanical stress were involved. Considering the high temperature gradient, the existing of liquid and solid regions and rolling deformation, suitable constitutive model is the key to describe the process. Anand's model is a temperature-dependent, rate-dependent and unified of creep and plasticity model and the Jaumann derivative was employed in Anand's model which makes the constitutive model frame-indifferent or objective, therefore the highly nonlinearities behavior in the twin-roll casting process can be simulated. The parameters of the Anand's model were regressed based on the compression tests of AZ31 magnesium alloy. The simulation results reveal that the Anand's model can well describe the deformation characteristics of twin-roll casting process. Based on the simulation results, the form of evolution equations in Anand's model was discussed.展开更多
A comprehensive consideration based on castability or plastic formability, as well as mechanical properties for development of either cast magnesium alloys or wrought magnesium alloys is a very important issue. To dev...A comprehensive consideration based on castability or plastic formability, as well as mechanical properties for development of either cast magnesium alloys or wrought magnesium alloys is a very important issue. To develop new magnesium alloy sheets with high formability at room temperature, the microstructure, texture, ductility and anisotropy of rolled Mg-Zn-Gd alloy sheets were investigated. The sheets exhibit an excellent ultimate elongation of nearly 50% and an uniform elongation greater than 30% with a very low planar anisotropy. The new sheet has a random basal texture and the basal pole is tilted by maximum 40° from the normal direction towards the transverse direction. The majority of grains in the tilted texture have an orientation favorable for both basal slip and tensile twining because of their high Schmid factor. The low planar anisotropy, the large uniform elongations and the high strain hardening rate observed in the Mg-Zn-Gd sheets result in excellent room temperature formability, the Erichsen values reach ~8, well comparable with the conventional aluminum alloys sheets at room temperature. The solidification pathways and phase equilibria of Mg-Al-Ca alloys have been profoundly investigated by using thermal analysis and thermodynamic calculations. The relationship between hot tearing tendency and alloy compositions were discussed in terms of strength of the mushy zone, solidification pathways and feeding mechanisms, et al. Thixoforming refers to as that metal components are formed in their semi-solid state. Criteria for thixoforming are summarized and then the thixoformability of Mg-Al-Ca based alloys (AC alloys) are evaluated using the thermodynamic calculations based on the consideration of metallurgical parameters.展开更多
The microstructures and mechanical properties of hot rolled AZ31 Mg alloy sheets were studied to understand the microstrucrure evolution during AZ31 Mg alloy hot rolling process. The roller was heated to 180℃with bur...The microstructures and mechanical properties of hot rolled AZ31 Mg alloy sheets were studied to understand the microstrucrure evolution during AZ31 Mg alloy hot rolling process. The roller was heated to 180℃with burning hydrogen, and the extruded plates were rolled at 400℃from 10 to 1 mm with a reduction of 30% in thickness per pass. The result shows that there is no side-cracking of these rolled sheets every pass. The extruded microstructures are greatly refined and mechanical properties are improved. The fine grains of about 4μm were obtained of the final 0.9 mm sheets.展开更多
Twin roll casting was commercialized for a strip production from ferrous and non-ferrous alloys in the 1950 s;however,its application to magnesium has proven difficult and still creates major challenges.This report de...Twin roll casting was commercialized for a strip production from ferrous and non-ferrous alloys in the 1950 s;however,its application to magnesium has proven difficult and still creates major challenges.This report describes global efforts in expanding manufacturing capabilities of magnesium sheet through twin roll casting path,offering many benefits,including a reduction in number of processing steps and energy savings.In addition to hardware design,alloy transformation during processing,product microstructure and properties,examples of successful solutions along with present technology and knowledge limitations are discussed.A particular attention is paid to developments at Canmet MATERIALS,having the only in North America pilot scale twin roll casting facility,devoted to magnesium.Efforts are described that aim at design of new magnesium alloys,which could take advantage of unique processing conditions during twin roll casting and contribute to the overall progress in magnesium sheet manufacturing.展开更多
A mathematic model of rolling pressure during a novel semisolid shearing-rolling process was established. The rolling pressure in this process is higher than that in the conventional rolling. The increment of rolling ...A mathematic model of rolling pressure during a novel semisolid shearing-rolling process was established. The rolling pressure in this process is higher than that in the conventional rolling. The increment of rolling pressure in the backward slip zone is higher than that in the forward slip zone, and the neutral plane moves toward to the roll gap entrance. The maximum and the average rolling pressures increase with the decrease of strip thickness, and the effects of strip thickness on the rolling pressure is more obvious in the forward slip zone than in the backward slip zone. Meanwhile, the neutral plane moves toward the roll gap exit with the decrease of strip thickness. The maximum and average rolling pressures increase with the decrease of strip width, and the strip width affects the pressure more obviously in the backward slip zone than in the forward slip zone. At the same time, the neutral plane moves toward the roll gap entrance with the decrease of strip width. The maximum and average rolling pressures increase with increasing roll radius, and the neutral plane moves toward the roll gap exit.展开更多
Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels a...Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels and specialty alloys in Baosteel, the cladded flat new products, which combined both properties of base material and clad material ,have been developed and produced in large quantities. The product categories includes heavy plates with high alloy content and homogeneous distribution in thickness and carbon steel plates cladded with all kinds of stainless steels ,nickel alloys ,and titanium alloys. The double-sided and single-sided cladding hot roiled strips and cold rolled sheets were also commercially produced. Due to the combined properties of both the cladding material and backing material, all products show obvious improvement in properties when compared with solid material. The comparability with the existing production process and equipment laid a very solid foundation for high productivity.展开更多
A pyramid sheet has been used in experiments and three-dimensional finite element simulation to study the edge cracks and effects of width on AZ31 sheet under rolling. Results show that the edge cracks of Mg sheet com...A pyramid sheet has been used in experiments and three-dimensional finite element simulation to study the edge cracks and effects of width on AZ31 sheet under rolling. Results show that the edge cracks of Mg sheet comply with the Normalized Crockroft & Latham theory. It can be predicted by D=-0.124+0.09X - 0.008X2, if D ;〉 0, the edge cracks occur. The sheet shearing deformation at the edge brings about cracks. The strain rate changes periodically with different X. With initial width increases, the recrystallized grain size decreases. The finite element model has been validated by the experiment results.展开更多
基金Project(51401043)supported by the National Natural Science Foundation of China
文摘In order to obtain quantitative relationship between(0002) texture intensity and hot rolling conditions, conventional rolling experiments on AZ31 magnesium alloys were performed with 20%-40% reductions and temperatures within the range of 300-500 ℃. Shear strain and equivalent strain distributions along the thickness of the rolled sheets were calculated experimentally using embedded pin in a rolling sheet. Rolling microstructures and textures in the sheet surface and center layers of the AZ31 alloys were measured by optical microscopy(OM), X-ray diffractometry(XRD) and electron back scatter diffraction(EBSD). Effects of the rolling strain, dynamic recrystallization(DRX) and twinning on the texture evolution of the AZ31 alloys were investigated quantitatively. It is found that the highest(0002) basal texture intensities are obtained at a starting rolling temperature of 400 ℃ under the same strain. Strain–temperature dependency of the(0002) texture intensity of the AZ31 alloy is derived.
文摘Cold-rolled steel sheets in automotive applications require an excellent deep draw ability, which is characterized by the Lankford value (r-value). In this study, a correlation was identified between r-value and pancake-shaped grain flatness which is indicated as the ratio of grain diameter in the rolling direction (RD) and normal direction (ND) of sheets (dr/dn). A mathematical model ( r = e^0.345(dn^1/2-dr^1/2) ) was developed to calculate r-value by the microstructure of steel sheets hot-rolled by compact strip production (CSP). It is shown that the r-value is higher, if the microstructure of steel sheet is of pancake-shaped grains elongated in the rolling direction. The calculated r-value is confirmed to fit exactly to the measured one from the large-scale production.
文摘Since the 2050 mm hot strip mill was put into operation in 1989, Baosteel has made great achievements in increasing productivity, developing new process technologies and steel products and improving product quality. In the past 18 years from 1989 to 2007 ,Baosteel has constructed five hot strip mills with a total annual capacity of 19.8 Mt. Indices for technology standards, product categories and steel grades, product quality, both technically and economically, take the lead domestically or reached the world class level. As there are many hot strip mills that expected to be put into operation by the end of 2010 ,the overall annual capacity will exceed 30 Mt ,and the product will cover grain oriented (GO) Si steels and alloyed steels.
基金The work described in this paper was funded by China 973 program(2013CB632202).
文摘The effects of Gd concentration(0.1,0.3,0.7 wt%)on the microstructure,texture and mechanical properties of rolled and annealed Mg-2Zn-xGd sheets have been investigated aiming to develop low cost and high ductile Mg-Zn-Gd sheets.Dynamic recrystallization,static recrystallization and grain growth during hot rolling process and annealing process were delayed with increase of Gd concentration,leading to fine grain microstructure.The rolled 0.1 wt%Gd sheet showed strong basal texture which remained stable after annealing process and exhibited medium elongation of about 25%.In contrast,the rolled 0.3 wt%Gd sheet had weak basal texture which transformed to non-basal texture with double peaks tilted about±48°to the transverse direction due to the static recrystallization during annealing process.Consequently,the annealed sheets exhibited higher elongation of 40%along the rolling direction and 50%along the transverse direction due to the existence of non-basal texture.It is suggested that the minimum effective concentration for texture randomization in the Mg-2Zn-xGd alloy is about 0.3 wt%.
文摘Attempts to expand manufacturing capabilities of magnesium-based sheet materials are described.The as-cast ZEK100(Mg-1.2Zn-0.35Zr-0.17Nd,in wt%)magnesium alloy was subjected to hot rolling at temperatures from 350℃to 450℃using the laboratory 50 ton reversible mill with preheated rolls to manufacture the 1.5-1.7 mm thick sheet.The rolling temperature affected the sheet properties and an increase in the rolling temperature from 250 to 450℃caused reduction of tensile strength from 257 to 228 MPa ac-companied by a reduction in tensile yield stress from 237 to 185 MPa.At the same time,the alloy elongation increased from 17 to 21%.For the same rolling temperature range,the compressive strength reduced from 418 to 351 MPa.The post-rolling annealing at 450℃led to reduction of both tensile and compressive properties with the largest changes corresponding to the rolling temperature of 350°C.The correlation between the alloy grain size after rolling and the sheet properties was established where a reduction in grain size was accompanied by an increase of both the tensile/compressive strength and yield stress.Based on Hall-Petch relationship and an average grain size the correlation developed in this study may be used as the prediction model for properties of the hot rolled magnesium sheet.The results are discussed in terms of recent developments in magnesium sheet alloys and the vital role played in this process by rare earth elements.
文摘Twin roll casting method is a promising route to directly produce magnesium alloy strip. It is a rapid solidification process with high temperature gradient combined with thermal flow and rolling deformation in the casting region. As-cast strip with proper microstructure is requested to serve as next rolling feedstock. However the microstructure of as-cast strip is sensitive for casting conditions during the casting process and the as-cast microstructure greatly affects the mechanical properties. In this work, the effect of casting speed, pouring temperature, deformation as well as anneal process on microstructure and mechanical properties were investigated. The results revels that twin-roll casting process can effectively refine the grain size, improve the morphology and distribution states of Mg17Al12. The homogenization treatment time can be shorted for the fine microstructure and lower the cost dramatically for the next forming process.
文摘150 cm wide AZ31 magnesium alloy sheet was produced by twin roll casting.The sheets of 6 mm thickness were cast. The sheet material was characterized using various techniques including metallography and XRD.The mechanical properties were investigated by tensile tests and hardness measurements.The procedures were developed for thermomechanical treatment of cast sheet material.The products of these procedures were characterized and the results were discussed for possible potential applications.
文摘Twin-roll thin strip casting process combines casting and hot rolling into a single process, in which thermal stress and thermal mechanical stress were involved. Considering the high temperature gradient, the existing of liquid and solid regions and rolling deformation, suitable constitutive model is the key to describe the process. Anand's model is a temperature-dependent, rate-dependent and unified of creep and plasticity model and the Jaumann derivative was employed in Anand's model which makes the constitutive model frame-indifferent or objective, therefore the highly nonlinearities behavior in the twin-roll casting process can be simulated. The parameters of the Anand's model were regressed based on the compression tests of AZ31 magnesium alloy. The simulation results reveal that the Anand's model can well describe the deformation characteristics of twin-roll casting process. Based on the simulation results, the form of evolution equations in Anand's model was discussed.
文摘A comprehensive consideration based on castability or plastic formability, as well as mechanical properties for development of either cast magnesium alloys or wrought magnesium alloys is a very important issue. To develop new magnesium alloy sheets with high formability at room temperature, the microstructure, texture, ductility and anisotropy of rolled Mg-Zn-Gd alloy sheets were investigated. The sheets exhibit an excellent ultimate elongation of nearly 50% and an uniform elongation greater than 30% with a very low planar anisotropy. The new sheet has a random basal texture and the basal pole is tilted by maximum 40° from the normal direction towards the transverse direction. The majority of grains in the tilted texture have an orientation favorable for both basal slip and tensile twining because of their high Schmid factor. The low planar anisotropy, the large uniform elongations and the high strain hardening rate observed in the Mg-Zn-Gd sheets result in excellent room temperature formability, the Erichsen values reach ~8, well comparable with the conventional aluminum alloys sheets at room temperature. The solidification pathways and phase equilibria of Mg-Al-Ca alloys have been profoundly investigated by using thermal analysis and thermodynamic calculations. The relationship between hot tearing tendency and alloy compositions were discussed in terms of strength of the mushy zone, solidification pathways and feeding mechanisms, et al. Thixoforming refers to as that metal components are formed in their semi-solid state. Criteria for thixoforming are summarized and then the thixoformability of Mg-Al-Ca based alloys (AC alloys) are evaluated using the thermodynamic calculations based on the consideration of metallurgical parameters.
文摘The microstructures and mechanical properties of hot rolled AZ31 Mg alloy sheets were studied to understand the microstrucrure evolution during AZ31 Mg alloy hot rolling process. The roller was heated to 180℃with burning hydrogen, and the extruded plates were rolled at 400℃from 10 to 1 mm with a reduction of 30% in thickness per pass. The result shows that there is no side-cracking of these rolled sheets every pass. The extruded microstructures are greatly refined and mechanical properties are improved. The fine grains of about 4μm were obtained of the final 0.9 mm sheets.
基金funded by the Program of Energy Research and Development(PERD)of Natural Resources Canada
文摘Twin roll casting was commercialized for a strip production from ferrous and non-ferrous alloys in the 1950 s;however,its application to magnesium has proven difficult and still creates major challenges.This report describes global efforts in expanding manufacturing capabilities of magnesium sheet through twin roll casting path,offering many benefits,including a reduction in number of processing steps and energy savings.In addition to hardware design,alloy transformation during processing,product microstructure and properties,examples of successful solutions along with present technology and knowledge limitations are discussed.A particular attention is paid to developments at Canmet MATERIALS,having the only in North America pilot scale twin roll casting facility,devoted to magnesium.Efforts are described that aim at design of new magnesium alloys,which could take advantage of unique processing conditions during twin roll casting and contribute to the overall progress in magnesium sheet manufacturing.
基金supported by the National Science Foundation for Outstanding Young Scholars of China (No.51222405)the National Natural Science Foundation of China (No.51034002)+1 种基金the Fok Ying-Tong Education Foundation (No.132002)the Major State Basic Research and Development Program of China (No.2011CB610405)
文摘A mathematic model of rolling pressure during a novel semisolid shearing-rolling process was established. The rolling pressure in this process is higher than that in the conventional rolling. The increment of rolling pressure in the backward slip zone is higher than that in the forward slip zone, and the neutral plane moves toward to the roll gap entrance. The maximum and the average rolling pressures increase with the decrease of strip thickness, and the effects of strip thickness on the rolling pressure is more obvious in the forward slip zone than in the backward slip zone. Meanwhile, the neutral plane moves toward the roll gap exit with the decrease of strip thickness. The maximum and average rolling pressures increase with the decrease of strip width, and the strip width affects the pressure more obviously in the backward slip zone than in the forward slip zone. At the same time, the neutral plane moves toward the roll gap entrance with the decrease of strip width. The maximum and average rolling pressures increase with increasing roll radius, and the neutral plane moves toward the roll gap exit.
文摘Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels and specialty alloys in Baosteel, the cladded flat new products, which combined both properties of base material and clad material ,have been developed and produced in large quantities. The product categories includes heavy plates with high alloy content and homogeneous distribution in thickness and carbon steel plates cladded with all kinds of stainless steels ,nickel alloys ,and titanium alloys. The double-sided and single-sided cladding hot roiled strips and cold rolled sheets were also commercially produced. Due to the combined properties of both the cladding material and backing material, all products show obvious improvement in properties when compared with solid material. The comparability with the existing production process and equipment laid a very solid foundation for high productivity.
基金the National Natural Science Foundation of China(Nos.51704209,U1810208,U1810122)the Central Government Guided Local Science and Technology Development Projects,China(No.YDZJSX2021A010)+5 种基金the Projects of International Cooperation in Shanxi Province,China(Nos.201803D421086,201903D421076)Shanxi Province Patent Promotion Implementation Fund,China(No.20200718)the Technological Innovation Programs of Higher Education Institutions in Shanxi Province,China(No.201802034)Shanxi Province Scientific Facilities and Instruments Shared Service Platform of Magnesium-based Materials Electric Impulse Aided Forming,China(No.201805D141005)Science and Technology Major Project of Shanxi Province,China(Nos.20191102008,20191102007,20181101008)Yantai High-end Talent Introduction“Double Hundred Plan”,China(2021)。
基金supported by 973 National Grand Theoretical Research Program(No.2007CB613700)National Sci & Technol Support Program (No.2007BAG06B04)+1 种基金Chongqing Sci & Technol Program (CSTC,2009AB4008)National Natural Science Foundation of China (No.50725413)
文摘A pyramid sheet has been used in experiments and three-dimensional finite element simulation to study the edge cracks and effects of width on AZ31 sheet under rolling. Results show that the edge cracks of Mg sheet comply with the Normalized Crockroft & Latham theory. It can be predicted by D=-0.124+0.09X - 0.008X2, if D ;〉 0, the edge cracks occur. The sheet shearing deformation at the edge brings about cracks. The strain rate changes periodically with different X. With initial width increases, the recrystallized grain size decreases. The finite element model has been validated by the experiment results.