期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling 被引量:5
1
作者 郭非 张丁非 +2 位作者 杨绪盛 蒋璐瑶 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期14-21,共8页
Commercial AZ31 magnesium alloy sheets were rolled by nearly 70% thickness reduction in one rolling pass at 823 K. The results show that ultrafine grains are distributed in both shear bands and surfaces of the rolled ... Commercial AZ31 magnesium alloy sheets were rolled by nearly 70% thickness reduction in one rolling pass at 823 K. The results show that ultrafine grains are distributed in both shear bands and surfaces of the rolled sheets. The grain size of the refined grain in the shear bands is 0.4-1 μm. The outstanding grain refinement is attained by dynamic recrystallization due to flow localization. The texture in middle layer of the sheet is basal texture with little change in intensity throughout the rolling process, while the texture on surface becomes a double-peak texture with basal poles splitting in the transverse direction(TD). The relative intensity of the double-peak texture is 26.6, which is quite higher than that of the texture in the middle layer. The inhomogeneous strain distribution is responsible for the exceptional grain refinement and texture evolution. 展开更多
关键词 magnesium alloy MICROSTRUCTURE texture evolution shear band large strain rolling
下载PDF
Dynamic recrystallization,texture and mechanical properties of high Mg content Al−Mg alloy deformed by high strain rate rolling 被引量:6
2
作者 Xin-yu LI Wei-jun XIA +4 位作者 Ji-hua CHEN Hong-ge YAN Zhen-zhen LI Bin SU Min SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2885-2898,共14页
The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature... The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature of 400℃and strain rate of 8.6 s^(−1).The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM).The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure,in which the average grain sizes of the fine dynamic recrystallization(DRX)grains and the coarse non-DRX regions are 6.4 and 47.7mm,respectively.The high strength((507±9)MPa)and the large ductility((24.9±1.3)%)are obtained in the alloy containing the bimodal grain distribution.The discontinuous dynamic recrystallization(DDRX)mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR. 展开更多
关键词 Al−Mg alloy high strain rate rolling bimodal grain structure dynamic recrystallization
下载PDF
Influence of Asymmetric Monotonic Hot Rolling on Microstructures and Mechanical Property of Microalloyed Steel
3
作者 李建平 刘珍光 +1 位作者 BAI Xiaolei LI Ping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期422-429,共8页
For refining grain and obtaining excellent properties, the experiments of asymmetric and symmetric monotonic hot rolling were carried out to investigate the role of shear strain on the microstructures and mechanical p... For refining grain and obtaining excellent properties, the experiments of asymmetric and symmetric monotonic hot rolling were carried out to investigate the role of shear strain on the microstructures and mechanical properties of V-microalloyed steel. The study demonstrates that the gradient ferrite distribution and dispersive pearlite through the sheet thickness are observed in asymmetric rolled specimen, and the homogeneous microstructure with ferrite and large pearlite is found in symmetric rolled specimen. The average grain size in asymmetric rolled specimen is smaller than the one in symmetric rolled specimen. The styles of precipitate morphology in asymmetric rolled specimen are random precipitate and obvious interphase precipitate, while the ones in symmetric rolled specimen are random precipitate and unobvious interphase precipitate. The additional shear strain results in the microstructure difference between asymmetric rolled specimen and symmetric rolled specimen. The impact energy of asymmetric rolled specimen, 58 J, is more than the one of symmetric rolled specimen, 48 J. Both deflection-energy curve and fracture morphology show that the fracture style of asymmetric rolled specimen is ductile, and the ones of symmetric rolled specimen are brittle and ductile. 展开更多
关键词 asymmetric rolling microstructure shear strain vanadium microalloyed steel
下载PDF
High plasticity mechanism of high strain rate rolled Mg-Ga alloy sheets 被引量:1
4
作者 Wensen Huang Jihua Chen +2 位作者 Hongge Yan Weijun Xia Bin Su 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期187-198,共12页
By observing the microstructure evolution of Mg-Ga alloy during tensile deformation, it is found that the prismatic slip and the pyramidal <c+a> slip occur during the tensile process at room temperature, which ... By observing the microstructure evolution of Mg-Ga alloy during tensile deformation, it is found that the prismatic slip and the pyramidal <c+a> slip occur during the tensile process at room temperature, which finally leads to the plenty of dislocation accumulation. After 8% tensile deformation,the {1012} extension twin is the main way to coordinate the strain in the c-axis direction for the alloy with the Ga content lower than 2 wt.%, but the pyramidal <c+a> slip is the main way to coordinate the strain along the c-axis direction for the alloy with the Ga content higher than 2 wt.%. The Ga addition can promote the activation of the non-basal slip, which is beneficial to the work-hardening of the alloy to achieve better plasticity. Dynamic precipitation can slightly reduce the increment of dislocations.The preparation method of high strain rate rolling(HSRR) is another important reason for the plasticity of magnesium alloy sheets, and it is an important embodiment of the application of the dislocation engineering concept in magnesium alloy. The non-basal dislocations derived from the HSRR deformation can provide the non-basal dislocation sources when magnesium alloy is deformed at room temperature,resulting in good ductility. This study can be used as a reference for preparing wrought magnesium alloy with high strength and high plasticity by Ga alloying and hot deformation. 展开更多
关键词 High plasticity High strain rate rolling Mg-Ga Dislocation engineering
原文传递
Springback behavior of tailor rolled blank in U-shape forming 被引量:5
5
作者 Ri-huan Lu Xiang-hua Liu +3 位作者 Shou-dong Chen Lu Feng Xian-lei Hu Li-zhong Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第8期787-794,共8页
The springback of tailor rolled blanks with quenching and partitioning steels was investigated.In order to find out the springback behavior and related influence factors for the novel sheets,both experimental and simu... The springback of tailor rolled blanks with quenching and partitioning steels was investigated.In order to find out the springback behavior and related influence factors for the novel sheets,both experimental and simulation methods have been used to compare and analyze the springback characteristics of equal thickness blanks and tailor rolled blanks in U-channel forming.From the results,the overall springback angles of tailor rolled blanks at thin and thick sides are respectively 106.79° and 99.705°,which are both lower than those of the corresponding equal thickness blanks.Due to the existence of the thickness transition zone,the stress distribution in thin and thick sides of blanks is changed.The location of dangerous region in thin side of tailor rolled blanks is closer to the end of side,and the thick side moved to the middle of straight wall,which are different with the equal thickness blanks.Afterwards,the released quantitles of tangential stress and strain per unit section of blank are adopted to calculate relative springback angles and give novel evaluation criteria for qualitatively analyzing the amount of springback angles.By comparing the results,it shows that the tangential strain method is more suitable for the actual situation. 展开更多
关键词 Tailor rolled blank Springback angle Elastic recovery Tangential stress Tangential strain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部