To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of t...To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.展开更多
Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and ...Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and electromagnetic control roll.Due to the limited space of ES and induction coil,the cross-sectional area of induction coil can be inevitably affected by changing the size of the ES induction zone,which can further change the energy input under the same electromagnetic parameters,the temperature rising effect and the bulging ability.To investigate this phenomenon,the effects of the radius of the induction zone on the thermal-force contribution ratio,the heating ability of ES and the temperature distribution were analyzed through an electromagnetic-thermal-structural finite element model.To ensure that the results are applicable to RPECT,the thermal energy conversion ability and thermal-force roll crown control ability under different lengths of the induction zone were analyzed.It was found that whether the current density regulation mode or the current frequency regulation mode is adopted,the cases with 20 or 25 mm radius of the induction zone have the great thermal energy conversion ability and the good thermal-force roll crown control ability.The reasonable adjustment of the length of the induction zone can reduce the radius required for the maximum energy efficiency regulation.Combined with the results of the simulation analysis,the optimization of ES based on the control ability maximization requirement is achieved,which provides the base for the design and configuration of ES in RPECT.展开更多
Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel pl...Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is expected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.展开更多
The electromagnetic control roll(ECR)and electromagnetic stick(ES)are the core elements and the main driving parts of roll profile electromagnetic control technology(RPECT).To prolong the service life,it is necessary ...The electromagnetic control roll(ECR)and electromagnetic stick(ES)are the core elements and the main driving parts of roll profile electromagnetic control technology(RPECT).To prolong the service life,it is necessary to treat ECR and ES surfaces.According to the heterogeneous characteristics of surface treatments,the roll profile electromagnetic control characteristics were analyzed for different parameters.An electromagnetic-thermal-force coupled axisymmetric finite element model was built to explore the differences in performance as a result of several treatment strategies,and the model was verified by experimental results measured with a roll profile electromagnetic control experimental platform.This model was used to analyze the influence of the heterogeneity of ECR inner hole and ES on the roll crown,the roll profile,the average contact pressure,and the stress state during RPECT process.The results indicate that the heterogeneous layer at ECR inner hole has a restrictive effect on RPECT and that the heterogeneous layer of ES can enhance the profile control ability of RPECT.A reasonable configuration scheme between the heterogeneity of ECR inner hole and the ES can increase the life of ECR and maintain the control ability of RPECT.展开更多
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.E2021203129).
文摘To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U1560206 and 51975510)the Natural Science Foundation of China in Hebei Province(Grant No.E2021203129).
文摘Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and electromagnetic control roll.Due to the limited space of ES and induction coil,the cross-sectional area of induction coil can be inevitably affected by changing the size of the ES induction zone,which can further change the energy input under the same electromagnetic parameters,the temperature rising effect and the bulging ability.To investigate this phenomenon,the effects of the radius of the induction zone on the thermal-force contribution ratio,the heating ability of ES and the temperature distribution were analyzed through an electromagnetic-thermal-structural finite element model.To ensure that the results are applicable to RPECT,the thermal energy conversion ability and thermal-force roll crown control ability under different lengths of the induction zone were analyzed.It was found that whether the current density regulation mode or the current frequency regulation mode is adopted,the cases with 20 or 25 mm radius of the induction zone have the great thermal energy conversion ability and the good thermal-force roll crown control ability.The reasonable adjustment of the length of the induction zone can reduce the radius required for the maximum energy efficiency regulation.Combined with the results of the simulation analysis,the optimization of ES based on the control ability maximization requirement is achieved,which provides the base for the design and configuration of ES in RPECT.
文摘Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is expected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.
基金This project is supported by the National Natural Science Foundation of China(Grant Nos.U1560206 and 51975510).
文摘The electromagnetic control roll(ECR)and electromagnetic stick(ES)are the core elements and the main driving parts of roll profile electromagnetic control technology(RPECT).To prolong the service life,it is necessary to treat ECR and ES surfaces.According to the heterogeneous characteristics of surface treatments,the roll profile electromagnetic control characteristics were analyzed for different parameters.An electromagnetic-thermal-force coupled axisymmetric finite element model was built to explore the differences in performance as a result of several treatment strategies,and the model was verified by experimental results measured with a roll profile electromagnetic control experimental platform.This model was used to analyze the influence of the heterogeneity of ECR inner hole and ES on the roll crown,the roll profile,the average contact pressure,and the stress state during RPECT process.The results indicate that the heterogeneous layer at ECR inner hole has a restrictive effect on RPECT and that the heterogeneous layer of ES can enhance the profile control ability of RPECT.A reasonable configuration scheme between the heterogeneity of ECR inner hole and the ES can increase the life of ECR and maintain the control ability of RPECT.