This paper describes the research of rollovers of passenger cars and proposes a ramp type test as a typical dynamic rollover test with evaluations of occupant injuries and vehicle deformation in accordance with variou...This paper describes the research of rollovers of passenger cars and proposes a ramp type test as a typical dynamic rollover test with evaluations of occupant injuries and vehicle deformation in accordance with various parametric functions. Many types of rollover tests have been conducted in the past and they have their merits and demerits. However, the ramp rollover test has a characteristic to evaluate both dummy injuries and vehicle deformations, and to perform tests under many conditions by exchanging ramp dimensions, steer timings made rotation and velocity of the vehicle.展开更多
Vehicle rollover, and its resulting fatalities, is an actively researched topic especially for multi-axle vehicles in the field of vehicle dynamics and control. This paper first presents a new rollover index for a tri...Vehicle rollover, and its resulting fatalities, is an actively researched topic especially for multi-axle vehicles in the field of vehicle dynamics and control. This paper first presents a new rollover index for a triaxle bus to accurately evaluate its rollover possibility and then discusses the influence laws of the vehicle rollover dynamics to explore the mechanism of its stability. First, a six degree of freedom rollover model of the triaxle bus is developed, including lateral, yaw, roll motion of the sprung mass of the front/rear axle, and roll motion of the unsprung mass of the front/rear axle. Next, some key parameters of the vehicle rollover model are identified. A new rollover index is deduced according to the basics of vehicle dynamics, to predict vehicle rollover risk for the triaxle bus, which is verified by TruckSim. Furthermore, the influence laws of vehicle rollover dynamics by vehicle parameters and road parameters are discussed based on the simulation results. More importantly, the results show that the new method of modeling can precisely describe the rollover dynamics of the studied bus, and the proposed new index can e ectively evaluate the rollover possibility. Therefore, this study provides a theoretical basis to improve anti-rollover ability for triaxle buses.展开更多
It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion ...It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper.Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability,a rollover dynamics model is built for the intelligent heavy truck.From the model,a novel rollover index is derived to evaluate vehicle rollover risk accurately,and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck,which integrates the vehicle rollover stability,the artificial potential field for the obstacle avoidance,the path tracking and vehicle dynamics constrains.Then,the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover.In addition,three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck.The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.展开更多
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif...Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.展开更多
Topset-to-forest rollover trajectories and their relation to sediment-and sand-budget partitioning into deep-lake areas are far from being well understood,as compared with their marine counterparts of shelf edges.Two ...Topset-to-forest rollover trajectories and their relation to sediment-and sand-budget partitioning into deep-lake areas are far from being well understood,as compared with their marine counterparts of shelf edges.Two quantitatively distinctive topset-to-forest rollover trajectories and clinothem-stacking patterns were recognized in the Oligocene Qikou Sag of the Bohai Bay Basin and are quantifed in terms of trajectory angles(T_(se)),topset thickness(T_(t)),forest thickness(T_(f)),bottomset thickness(T_(b)),and clinothem-set relief(R_(c)).Rising topset-to-forest trajectories have positive T_(se) of 0.15°-0.51°(averaging 0.35°).Ranges in T_(t),T_(f),T_(b),and R_(c) of their associated progradational and aggradational clinothem sets are,respectively,32.4-58.7 m(averaging 42.7 m),76.9-176.2 m(averaging 148.3 m),0 m,and 167.8-320.8 m(averaging 272.9 m).Falling topset-to-forest rollover trajectories,in contrast,have negative T_(se) of−0.12°to−0.02°(averaging−0.06°).Ranges in T_(t),T_(f),T_(b),and R_(c) of their associated progradational and downstepping clinothem sets are,respectively,0 m,266.0-395.7 m(averaging 333.4 m),441.1-542.5 m(averaging 464.1),and 874.9-922.6 m(averaging 892.5 m).These two topset-to-forest rollover trajectories and clinothem-stacking patterns are closely linked to two distinctive patterns of sediment-and sandvolume partitioning into deep-lake areas,which are quantifed in terms of T_(t),T_(b),and diferential sediment aggradation of topset segments and forest-to-bottomset compartments(As/Ad).Rising topset-to-forest rollover trajectories and associated progradational and aggradational clinothem sets are characterized by aggradational topsets(reported as T_(t) of 32.4-58.7 m),a lack of time-equivalent bottomsets,and As/Ad of 0.22-0.87(averaging 0.33),and are fronted by mud-dominated depositional deposits,with sporadic occurrence of thinner and regionally localized forest sands.They are,therefore,inefcient at delivering terrestrial sediments or sands into deep-lake settings.Falling topset-to-forest rollover trajectories and associated progradational and downstepping clinothem sets,in contrast,are characterized by toplap,erosional terminations but aggradational bottomsets(reported as T_(b) of 266.0-473.4 m),and As/Ad of 0,and are fronted by sand-rich depositional deposits,with widespread occurrence of thicker and regionally extensive time-equivalent deep-lake bottomset sands.They are,thus,efcient at delivering terrestrial sediments or sands into deep-lake settings.Topset-to-forest rollover trajectories and associated clinothem-stacking patterns are thus reliable predictors of sediment-and sand-volume partitioning into deep-lake areas,assisting greatly in developing a more dynamic stratigraphy.展开更多
Cosmogenic nuclide exposure dating is one of the most intensively applied dating methods with which to study glacial geomorphology.Glacial erratics have been the major dating objective in many studies.Some research ha...Cosmogenic nuclide exposure dating is one of the most intensively applied dating methods with which to study glacial geomorphology.Glacial erratics have been the major dating objective in many studies.Some research has proposed that glacial erratics may undergo rollover and re-transportation during the late exposure stage,which can affect the dating results.However,there is no direct evidence to confirm this possibility.In this study,we collected seven samples from a vertical section inside a glacial erratic in the paleo-Daocheng ice cap in the southeastern Tibetan Plateau,measuring their contents of the cosmogenic nuclides ^(10)Be and ^(26)Al.The results show that from the top to the bottom,the concentrations of 10Be were(1.21±0.05)×10^(6),(1.00±0.02)×10^(6),(0.88±0.03)×10^(6),(0.77±0.02)×10^(6),(0.75±0.03)×10^(6),(0.95±0.03)×10^(6) and(1.46±0.04)×10^(6) atoms/g.The ^(10)Be concentrations decreased from(1.21±0.05)×10^(6) atoms/g to(0.75±0.03)×10^(6) atoms/g and then increased to(1.46±0.04)×10^(6) atoms/g,which is not consistent with the theoretical prediction of a gradual decrease.This phenomenon indicates that the glacial erratic may have rolled over at least once.The lower surface of the erratic could have been on top at some time in the past.Therefore,its exposure age was greater than the exposure age that was expected,based on its current orientation.This study provides numerical evidence for an erratic rollover event.展开更多
Rollover of commercial heavy vehicles can cause enormous economic losses and fatalities.It is easier for such vehicles to rollover if the driver’s steering frequency is close to the critical frequency of the vehicle...Rollover of commercial heavy vehicles can cause enormous economic losses and fatalities.It is easier for such vehicles to rollover if the driver’s steering frequency is close to the critical frequency of the vehicle’s roll motion;however,the critical roll frequency has rarely been investigated.In this study,the second-order transfer function between the steering input and roll angle was developed to calculate the critical frequency of the vehicle’s roll motion.The simulated spectrum and transfer function were then used to dynamically predict the peak lateral load transfer ratio.Laboratory experiments were conducted using a scaled vehicle to verify the critical roll frequency.The results suggest that the peak value of the lateral load transfer ratio during steering can be accurately determined from the driver’s input,and the critical roll frequency has a dominant effect on the dynamic rollover of heavy vehicles.展开更多
This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robu...This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.展开更多
An auto rickshaw is a three-wheeled motor vehicle commonly found in Asia, with one front steering wheel and two driven wheels at the back. In automobiles, suspension is used to keep the wheels planted during motion. T...An auto rickshaw is a three-wheeled motor vehicle commonly found in Asia, with one front steering wheel and two driven wheels at the back. In automobiles, suspension is used to keep the wheels planted during motion. The trailing arm suspension generally found in Indian automobiles has its roll center on the ground. The vehicle's center of gravity is above the ground, which creates a moment during vehicle turning known as the roll moment. When this roll moment exceeds a certain limit, the vehicle becomes unstable. Roll rate can be expressed as degrees per lateral acceleration of the vehicle's sprung mass, and is influenced by factors such as wheel rate, motion ratio, and suspension rate. In order to determine an optimized three-wheeler suspension setup, a matrix selection method was used, in which every available suspension type in the market is rated based on selected suspension parameters such as handling, dynamics, and simplicity. From the overall weightage, each suspension type is analyzed and the most appropriate is selected. In order to achieve the objective of improving the overall rollover stability, certain modifications have been applied in the selected suspension design. Generally, if the roll rate of a specific vehicle axle is high, the percentage of weight transfer on the axle will also be high. By improving roll stiffness, the amount of roll can be decreased, and by optimizing the motion ratio, the roll moment can be controlled, thereby increasing the overall rollover stability.展开更多
Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However...Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.展开更多
Different wind models are being used for the operational safety evaluation of a high-speed train exposed to crosswinds. However, the methodology for simulating natural wind is of substantial importance in the wind-tra...Different wind models are being used for the operational safety evaluation of a high-speed train exposed to crosswinds. However, the methodology for simulating natural wind is of substantial importance in the wind-train system, and different simplified forms of natural wind result in different levels of accuracy. The purpose of the research in this paper is to investigate the effects of different wind models on the operational safety evaluation of high-speed trains. First, three wind models, namely, steady wind model, gust wind model, and turbulent wind model, are constructed. Following this, the algorithms for computing the aerodynamic loads using the wind models are described. A multi-body dynamic model of a vehicle is then set up using the commercial software "Simpack" for investigating the dynamic behavior of a railway vehicle exposed to wind loads. The rollover risks corresponding to each wind model are evaluated by applying the definition of characteristic wind curves (CWC). The results indicate that the CWC computed using the gust wind model is marginally higher than that computed using the turbulent wind model;the difference is less than 1%. With regard to the steady wind model, the assurance coefficient substantially affects the final CWC. A reasonable agreement of CWC between the steady wind model and turbulent wind model can be obtained by applying an "appropriate value" of the assurance coefficient. This study included a systematic analysis of the operational safety evaluation results using different wind models;the analysis can serve as a reference basis for different engineering accuracy requirements.展开更多
Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on...Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on fuzzy logic controller(FLC) and linear quadratic regulator(LQR) for improving vehicle path following,roll and handling performances simultaneously.3-DOF vehicle model including yaw rate,lateral velocity(lateral dynamic) and roll angle(roll dynamic) were developed.The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal.The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers.Simulation results demonstrate that in both cases(FLC and LQR controllers) by reducing roll angle,lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver,which ensures vehicle stability and handling properties.Finally,the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.展开更多
Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed t...Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover.First,a 4-degree of freedom vehicle dynamics model,and a rollover risk index are introduced.Besides,the uncertainty of surrounding vehicles’position is processed and propagated based on the Extended Kalman Filter method.Then,the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles.In addition,the model predictive controller is designed as the motion planning framework which accounts for the rollover risk,the position uncertainty of the surrounding vehicles,and vehicle dynamic constraints of autonomous vehicles.Furthermore,two edge cases,the cut-in scenario,and merging scenario are designed.Finally,the safety,effectiveness,and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.展开更多
The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical func...The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.展开更多
We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-...We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.展开更多
A micro controller unit (MCU) oriented image acquisition and automatic guidance system is proposed. Image rectification and guidance recognition are discussed. The relation between camera setting and sight view is ill...A micro controller unit (MCU) oriented image acquisition and automatic guidance system is proposed. Image rectification and guidance recognition are discussed. The relation between camera setting and sight view is illustrated for smart car. A novel edge detection and trend prediction method is proposed for MCU processing unit for automatic guidance. A hardware-based binary proposal is discussed for guidance information detection with raster data. Keystone distortion correcting algorithm is also designed for MCU application and the performance of track type recognition is improved. Together with rollover preventing calculation, the proposed design is successfully applied to a 1∶10 scale model car.展开更多
Integrated modelling, well correlation and petrophysical analysis were performed to characterize the reservoirs for optimum hydrocarbon correlation using 3-D seismic reflection data and suites of well logs from Ataga ...Integrated modelling, well correlation and petrophysical analysis were performed to characterize the reservoirs for optimum hydrocarbon correlation using 3-D seismic reflection data and suites of well logs from Ataga 5, 7, 10 and 11 wells respectively in Ataga field, shallow offshore, Niger Delta Basin, Nigeria. The study revealed the presence of two viable hydrocarbon bearing reservoirs, AT1 and AT2 and the average values of porosity, permeability, water saturation, hydrocarbon saturation, Net to Gross (NTG) and volume of shale are in the ranges of 15% - 77%, 44.5% - 75.5%, 25.5% - 85%, 15% - 75.5%, 0.70 - 0.88 and 0.11 - 0.38 respectively which goes further to show that the both reservoirs have fair characteristics that are suggestive of the presence of hydrocarbon accumulation. It can therefore be deduced that the permeability values are reflective of fair interconnectivity of pore spaces of sands within the well areas and their ability to transmit fluids, the depth and depth structural map generated for the horizons and structures shows that the most dominant trapping mechanism in the area under study is the crescentic growth fault and the rollover anticlines trending in the Northwest-Southeast direction and from the volumetric analysis. It can be deduced that the recoverable gas for AT1 and AT2 reservoirs is 2 × 10<sup>6</sup> mscf and 6 × 10<sup>6</sup> mscf respectively.展开更多
To solve the problem of small planting plots and large sloping land for mechanized maize harvesting in China hilly and mountainous areas,a small maize harvester with attitude adjustment was designed to realize maize s...To solve the problem of small planting plots and large sloping land for mechanized maize harvesting in China hilly and mountainous areas,a small maize harvester with attitude adjustment was designed to realize maize snapping,peeling,straw crushing and attitude adjusting at on time in this study.The basic structure and working principle of the small maize harvester were described,and the key components were designed as follows.The maize snapping device adopted the combination form of maize snapping plates and straw pulling rollers,and the gap of the straw pulling rollers can be adjusted to adapt to different maize varieties.Two pairs of peeling rollers formed a groove arrangement to improve peeling rate and reduced ear grain loss.The pressure feeding device mainly comprised drive chain and three grade pressure feeding rollers to increase the friction between ears and the peeling rollers,and help ears slide.The attitude adjustment advice was designed according to the high point stationary pursuit leveling method.When the attitude angle of the rack approached 0,the small maize harvester reached the level state.The actual range of attitude adjustment was obtained and the accuracy of static attitude adjustment was verified through attitude adjustment test.The influencing factors of ear loss rate and bract peeling rate were determined by orthogonal test,including the rotational speed of straw pulling rollers,peeling rollers and pressure feeding rollers.The mathematical regression model between the experimental factors and indicators was established by using Design Expert,and through the analysis variance to verify the significance of the evaluation indicators,the best combination of operation parameters was determined that the rotational speed of straw pulling rollers,peeling rollers and pressure feeding rollers were 1440 r/min,1535 r/min and 406 r/min.Under the optimal combination of the operation parameters,the ear loss rate and bract peeling rate were 1.33%and 93.98%.The design indicators of the small maize harvester can meet the relevant national standards,and can satisfy the need of maize mechanized harvesting in China hilly and mountainous areas.展开更多
文摘This paper describes the research of rollovers of passenger cars and proposes a ramp type test as a typical dynamic rollover test with evaluations of occupant injuries and vehicle deformation in accordance with various parametric functions. Many types of rollover tests have been conducted in the past and they have their merits and demerits. However, the ramp rollover test has a characteristic to evaluate both dummy injuries and vehicle deformations, and to perform tests under many conditions by exchanging ramp dimensions, steer timings made rotation and velocity of the vehicle.
基金Supported by National Natural Science Foundation of China(Grant No.51775269)
文摘Vehicle rollover, and its resulting fatalities, is an actively researched topic especially for multi-axle vehicles in the field of vehicle dynamics and control. This paper first presents a new rollover index for a triaxle bus to accurately evaluate its rollover possibility and then discusses the influence laws of the vehicle rollover dynamics to explore the mechanism of its stability. First, a six degree of freedom rollover model of the triaxle bus is developed, including lateral, yaw, roll motion of the sprung mass of the front/rear axle, and roll motion of the unsprung mass of the front/rear axle. Next, some key parameters of the vehicle rollover model are identified. A new rollover index is deduced according to the basics of vehicle dynamics, to predict vehicle rollover risk for the triaxle bus, which is verified by TruckSim. Furthermore, the influence laws of vehicle rollover dynamics by vehicle parameters and road parameters are discussed based on the simulation results. More importantly, the results show that the new method of modeling can precisely describe the rollover dynamics of the studied bus, and the proposed new index can e ectively evaluate the rollover possibility. Therefore, this study provides a theoretical basis to improve anti-rollover ability for triaxle buses.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775269,U1964203,52072215)National Key R&D Program of China(Grant No.2020YFB1600303).
文摘It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper.Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability,a rollover dynamics model is built for the intelligent heavy truck.From the model,a novel rollover index is derived to evaluate vehicle rollover risk accurately,and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck,which integrates the vehicle rollover stability,the artificial potential field for the obstacle avoidance,the path tracking and vehicle dynamics constrains.Then,the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover.In addition,three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck.The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.
基金Project(11672127)supported by the National Natural Science Foundation of ChinaProject(NHAl3002)supported by the Major Exploration Project of the General Armaments Department of China+1 种基金Project(KYCX17_0240)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(NP2016412,NP2018403,NT2018002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.
基金This research was jointly funded by the Science Foundation of China University of Petroleum,Beijing(Nos.2462017YJRC061 and 2462020YXZZ020).
文摘Topset-to-forest rollover trajectories and their relation to sediment-and sand-budget partitioning into deep-lake areas are far from being well understood,as compared with their marine counterparts of shelf edges.Two quantitatively distinctive topset-to-forest rollover trajectories and clinothem-stacking patterns were recognized in the Oligocene Qikou Sag of the Bohai Bay Basin and are quantifed in terms of trajectory angles(T_(se)),topset thickness(T_(t)),forest thickness(T_(f)),bottomset thickness(T_(b)),and clinothem-set relief(R_(c)).Rising topset-to-forest trajectories have positive T_(se) of 0.15°-0.51°(averaging 0.35°).Ranges in T_(t),T_(f),T_(b),and R_(c) of their associated progradational and aggradational clinothem sets are,respectively,32.4-58.7 m(averaging 42.7 m),76.9-176.2 m(averaging 148.3 m),0 m,and 167.8-320.8 m(averaging 272.9 m).Falling topset-to-forest rollover trajectories,in contrast,have negative T_(se) of−0.12°to−0.02°(averaging−0.06°).Ranges in T_(t),T_(f),T_(b),and R_(c) of their associated progradational and downstepping clinothem sets are,respectively,0 m,266.0-395.7 m(averaging 333.4 m),441.1-542.5 m(averaging 464.1),and 874.9-922.6 m(averaging 892.5 m).These two topset-to-forest rollover trajectories and clinothem-stacking patterns are closely linked to two distinctive patterns of sediment-and sandvolume partitioning into deep-lake areas,which are quantifed in terms of T_(t),T_(b),and diferential sediment aggradation of topset segments and forest-to-bottomset compartments(As/Ad).Rising topset-to-forest rollover trajectories and associated progradational and aggradational clinothem sets are characterized by aggradational topsets(reported as T_(t) of 32.4-58.7 m),a lack of time-equivalent bottomsets,and As/Ad of 0.22-0.87(averaging 0.33),and are fronted by mud-dominated depositional deposits,with sporadic occurrence of thinner and regionally localized forest sands.They are,therefore,inefcient at delivering terrestrial sediments or sands into deep-lake settings.Falling topset-to-forest rollover trajectories and associated progradational and downstepping clinothem sets,in contrast,are characterized by toplap,erosional terminations but aggradational bottomsets(reported as T_(b) of 266.0-473.4 m),and As/Ad of 0,and are fronted by sand-rich depositional deposits,with widespread occurrence of thicker and regionally extensive time-equivalent deep-lake bottomset sands.They are,thus,efcient at delivering terrestrial sediments or sands into deep-lake settings.Topset-to-forest rollover trajectories and associated clinothem-stacking patterns are thus reliable predictors of sediment-and sand-volume partitioning into deep-lake areas,assisting greatly in developing a more dynamic stratigraphy.
基金supported by the National Natural Science Foundation of China(Grant nos.41971009 and 41503054)the CASKJZD-EW-G03-04 project(Grant No.Y4422101001)+1 种基金the General Financial Grant of the China Postdoctoral Science Foundation(Grant No.2015M582728)the Priority AcademicProgram Development of Jiangsu Higher EducationInstitutions(Grant No.164320H116)。
文摘Cosmogenic nuclide exposure dating is one of the most intensively applied dating methods with which to study glacial geomorphology.Glacial erratics have been the major dating objective in many studies.Some research has proposed that glacial erratics may undergo rollover and re-transportation during the late exposure stage,which can affect the dating results.However,there is no direct evidence to confirm this possibility.In this study,we collected seven samples from a vertical section inside a glacial erratic in the paleo-Daocheng ice cap in the southeastern Tibetan Plateau,measuring their contents of the cosmogenic nuclides ^(10)Be and ^(26)Al.The results show that from the top to the bottom,the concentrations of 10Be were(1.21±0.05)×10^(6),(1.00±0.02)×10^(6),(0.88±0.03)×10^(6),(0.77±0.02)×10^(6),(0.75±0.03)×10^(6),(0.95±0.03)×10^(6) and(1.46±0.04)×10^(6) atoms/g.The ^(10)Be concentrations decreased from(1.21±0.05)×10^(6) atoms/g to(0.75±0.03)×10^(6) atoms/g and then increased to(1.46±0.04)×10^(6) atoms/g,which is not consistent with the theoretical prediction of a gradual decrease.This phenomenon indicates that the glacial erratic may have rolled over at least once.The lower surface of the erratic could have been on top at some time in the past.Therefore,its exposure age was greater than the exposure age that was expected,based on its current orientation.This study provides numerical evidence for an erratic rollover event.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 51905483.
文摘Rollover of commercial heavy vehicles can cause enormous economic losses and fatalities.It is easier for such vehicles to rollover if the driver’s steering frequency is close to the critical frequency of the vehicle’s roll motion;however,the critical roll frequency has rarely been investigated.In this study,the second-order transfer function between the steering input and roll angle was developed to calculate the critical frequency of the vehicle’s roll motion.The simulated spectrum and transfer function were then used to dynamically predict the peak lateral load transfer ratio.Laboratory experiments were conducted using a scaled vehicle to verify the critical roll frequency.The results suggest that the peak value of the lateral load transfer ratio during steering can be accurately determined from the driver’s input,and the critical roll frequency has a dominant effect on the dynamic rollover of heavy vehicles.
基金supported by the"Conseil Régional de Picardie"and the European Regional Development Fund within the framework of the project"SEDVAC"
文摘This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.
文摘An auto rickshaw is a three-wheeled motor vehicle commonly found in Asia, with one front steering wheel and two driven wheels at the back. In automobiles, suspension is used to keep the wheels planted during motion. The trailing arm suspension generally found in Indian automobiles has its roll center on the ground. The vehicle's center of gravity is above the ground, which creates a moment during vehicle turning known as the roll moment. When this roll moment exceeds a certain limit, the vehicle becomes unstable. Roll rate can be expressed as degrees per lateral acceleration of the vehicle's sprung mass, and is influenced by factors such as wheel rate, motion ratio, and suspension rate. In order to determine an optimized three-wheeler suspension setup, a matrix selection method was used, in which every available suspension type in the market is rated based on selected suspension parameters such as handling, dynamics, and simplicity. From the overall weightage, each suspension type is analyzed and the most appropriate is selected. In order to achieve the objective of improving the overall rollover stability, certain modifications have been applied in the selected suspension design. Generally, if the roll rate of a specific vehicle axle is high, the percentage of weight transfer on the axle will also be high. By improving roll stiffness, the amount of roll can be decreased, and by optimizing the motion ratio, the roll moment can be controlled, thereby increasing the overall rollover stability.
基金supported by Open Research Fund of State Key Laboratory of Automobile Dynamics Simulation, China (Grant No. 20101103)National Natural Science Foundation of China (Grant No. 51075176)
文摘Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.
基金Supported by National Natural Science Foundation of China(Grant Nos.51705267,51605397)China Postdoctoral Science Foundation Grant(Grant No.2018M630750)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014EEP002)
文摘Different wind models are being used for the operational safety evaluation of a high-speed train exposed to crosswinds. However, the methodology for simulating natural wind is of substantial importance in the wind-train system, and different simplified forms of natural wind result in different levels of accuracy. The purpose of the research in this paper is to investigate the effects of different wind models on the operational safety evaluation of high-speed trains. First, three wind models, namely, steady wind model, gust wind model, and turbulent wind model, are constructed. Following this, the algorithms for computing the aerodynamic loads using the wind models are described. A multi-body dynamic model of a vehicle is then set up using the commercial software "Simpack" for investigating the dynamic behavior of a railway vehicle exposed to wind loads. The rollover risks corresponding to each wind model are evaluated by applying the definition of characteristic wind curves (CWC). The results indicate that the CWC computed using the gust wind model is marginally higher than that computed using the turbulent wind model;the difference is less than 1%. With regard to the steady wind model, the assurance coefficient substantially affects the final CWC. A reasonable agreement of CWC between the steady wind model and turbulent wind model can be obtained by applying an "appropriate value" of the assurance coefficient. This study included a systematic analysis of the operational safety evaluation results using different wind models;the analysis can serve as a reference basis for different engineering accuracy requirements.
文摘Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on fuzzy logic controller(FLC) and linear quadratic regulator(LQR) for improving vehicle path following,roll and handling performances simultaneously.3-DOF vehicle model including yaw rate,lateral velocity(lateral dynamic) and roll angle(roll dynamic) were developed.The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal.The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers.Simulation results demonstrate that in both cases(FLC and LQR controllers) by reducing roll angle,lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver,which ensures vehicle stability and handling properties.Finally,the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.
基金National Key R&D Program of China(Grant No.2020YFB1600303)National Natural Science Foundation of China(Grant Nos.U1964203,52072215)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956).
文摘Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover.First,a 4-degree of freedom vehicle dynamics model,and a rollover risk index are introduced.Besides,the uncertainty of surrounding vehicles’position is processed and propagated based on the Extended Kalman Filter method.Then,the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles.In addition,the model predictive controller is designed as the motion planning framework which accounts for the rollover risk,the position uncertainty of the surrounding vehicles,and vehicle dynamic constraints of autonomous vehicles.Furthermore,two edge cases,the cut-in scenario,and merging scenario are designed.Finally,the safety,effectiveness,and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.
文摘The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012 and 61076148)the Foundation of Beijing Municipal Education Commission, China (Grant No. KM201010005030)
文摘We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.
文摘A micro controller unit (MCU) oriented image acquisition and automatic guidance system is proposed. Image rectification and guidance recognition are discussed. The relation between camera setting and sight view is illustrated for smart car. A novel edge detection and trend prediction method is proposed for MCU processing unit for automatic guidance. A hardware-based binary proposal is discussed for guidance information detection with raster data. Keystone distortion correcting algorithm is also designed for MCU application and the performance of track type recognition is improved. Together with rollover preventing calculation, the proposed design is successfully applied to a 1∶10 scale model car.
文摘Integrated modelling, well correlation and petrophysical analysis were performed to characterize the reservoirs for optimum hydrocarbon correlation using 3-D seismic reflection data and suites of well logs from Ataga 5, 7, 10 and 11 wells respectively in Ataga field, shallow offshore, Niger Delta Basin, Nigeria. The study revealed the presence of two viable hydrocarbon bearing reservoirs, AT1 and AT2 and the average values of porosity, permeability, water saturation, hydrocarbon saturation, Net to Gross (NTG) and volume of shale are in the ranges of 15% - 77%, 44.5% - 75.5%, 25.5% - 85%, 15% - 75.5%, 0.70 - 0.88 and 0.11 - 0.38 respectively which goes further to show that the both reservoirs have fair characteristics that are suggestive of the presence of hydrocarbon accumulation. It can therefore be deduced that the permeability values are reflective of fair interconnectivity of pore spaces of sands within the well areas and their ability to transmit fluids, the depth and depth structural map generated for the horizons and structures shows that the most dominant trapping mechanism in the area under study is the crescentic growth fault and the rollover anticlines trending in the Northwest-Southeast direction and from the volumetric analysis. It can be deduced that the recoverable gas for AT1 and AT2 reservoirs is 2 × 10<sup>6</sup> mscf and 6 × 10<sup>6</sup> mscf respectively.
基金the Shandong Provincial Natural Science Foundation(Grant No.ZR2023QE091)the Shandong Province Agricultural Machinery R&D Manufacturing Promotion and Application Integration Project(Grant No.NJYTHSD-202318).
文摘To solve the problem of small planting plots and large sloping land for mechanized maize harvesting in China hilly and mountainous areas,a small maize harvester with attitude adjustment was designed to realize maize snapping,peeling,straw crushing and attitude adjusting at on time in this study.The basic structure and working principle of the small maize harvester were described,and the key components were designed as follows.The maize snapping device adopted the combination form of maize snapping plates and straw pulling rollers,and the gap of the straw pulling rollers can be adjusted to adapt to different maize varieties.Two pairs of peeling rollers formed a groove arrangement to improve peeling rate and reduced ear grain loss.The pressure feeding device mainly comprised drive chain and three grade pressure feeding rollers to increase the friction between ears and the peeling rollers,and help ears slide.The attitude adjustment advice was designed according to the high point stationary pursuit leveling method.When the attitude angle of the rack approached 0,the small maize harvester reached the level state.The actual range of attitude adjustment was obtained and the accuracy of static attitude adjustment was verified through attitude adjustment test.The influencing factors of ear loss rate and bract peeling rate were determined by orthogonal test,including the rotational speed of straw pulling rollers,peeling rollers and pressure feeding rollers.The mathematical regression model between the experimental factors and indicators was established by using Design Expert,and through the analysis variance to verify the significance of the evaluation indicators,the best combination of operation parameters was determined that the rotational speed of straw pulling rollers,peeling rollers and pressure feeding rollers were 1440 r/min,1535 r/min and 406 r/min.Under the optimal combination of the operation parameters,the ear loss rate and bract peeling rate were 1.33%and 93.98%.The design indicators of the small maize harvester can meet the relevant national standards,and can satisfy the need of maize mechanized harvesting in China hilly and mountainous areas.