Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ...Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.展开更多
In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under th...In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.展开更多
Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a co...Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a compound roof by using pre-stressed bolts to improve the backfilling ratio of the work- face so as to maintain the global stability of the stope roof. In addition, PHASE simulation software was employed to analyze the influence law of pre-stressing force, length, and interval on roof subsidence at the workface. On the basis of the numerical simulation results, a model for calculating the pre-stressing force and length of the bolts, the interval between the bolts, as well as roof subsidence at the workface, was established by using SPSS regression analysis software. Moreover, the research results were applied successfully to the 1801 filling workface. According to the monitoring data of roof closure, it was found that the final subsidence value for the goal roof was 350 mm and the filling ratio at the workface was 86%, which could fully meet the demand for safety production at the workface. The safe and effective control of the stope roof was therefore realized, which achieves the goal of safe and efficient backfilling mining under a compound roof.展开更多
Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causin...Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cro...Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.展开更多
基金the National Natural Science Foundation of China(No.51974042)National Key Research and Development Program of China(No.2023YFC3009005).
文摘Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.
基金the National Natural Science Foundation of China (No. 51304208)the Science and Technology Research of the Ministry of Education of China
文摘In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.
基金the Qinglan Project,the National Key Basic Research Program of China (No.2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.51421003)
文摘Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a compound roof by using pre-stressed bolts to improve the backfilling ratio of the work- face so as to maintain the global stability of the stope roof. In addition, PHASE simulation software was employed to analyze the influence law of pre-stressing force, length, and interval on roof subsidence at the workface. On the basis of the numerical simulation results, a model for calculating the pre-stressing force and length of the bolts, the interval between the bolts, as well as roof subsidence at the workface, was established by using SPSS regression analysis software. Moreover, the research results were applied successfully to the 1801 filling workface. According to the monitoring data of roof closure, it was found that the final subsidence value for the goal roof was 350 mm and the filling ratio at the workface was 86%, which could fully meet the demand for safety production at the workface. The safe and effective control of the stope roof was therefore realized, which achieves the goal of safe and efficient backfilling mining under a compound roof.
基金sponsored by the National Natural Science Foundation of China(No.50874021 )the Program for New Century Excellent Talents in University(No.NCET-08-0833)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0656) of the Ministry of Education of China.
文摘Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.
文摘Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.