The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w ear...The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.展开更多
Interior landscape design reflects human psychological and physical needs on living and working environment, this paper from the perspective of dynamics of interior landscape design and design concept of dynamic ceili...Interior landscape design reflects human psychological and physical needs on living and working environment, this paper from the perspective of dynamics of interior landscape design and design concept of dynamic ceiling explored the means of meeting dynamic psychological needs of users, and the coordination between interior landscape design and energy-saving design of principal buildings.展开更多
Energy-saving design of residential building is an important part of energy-saving architectural design. Planning and design of residential buildings in Hanzhong area should pay more attention to the building orientat...Energy-saving design of residential building is an important part of energy-saving architectural design. Planning and design of residential buildings in Hanzhong area should pay more attention to the building orientation, sunshine, summer ventilation and wind resistance in winter and so on, so as to create favorable conditions for energy-saving design of single buildings. The geographical location, climatic characteristics, residents living habits and indoor and outdoor thermal environment situation were analyzed in this paper, and combined with the existing problems of energy conservation in the planning and layout of residential buildings in Hanzhong area. Based on the investigation, this paper drew some conclusions to provide references for the energy-saving planning and design of urban residential buildings in the local area.展开更多
With the increasing requirement of a higher living quality and the growing awareness of energy saving, how to improve the indoor comfort level and to reduce the expenditure of energy and slow down the rate of natural ...With the increasing requirement of a higher living quality and the growing awareness of energy saving, how to improve the indoor comfort level and to reduce the expenditure of energy and slow down the rate of natural resource consumption is becoming increasingly important. The theory of open-plan housing is able to provide a more flexible and adaptive space for the users and bring sustainable and economic benefit in the way of making full use of construction materials. Sustainable architecture design, as a method to respond the phenomenon, is able to low down the building' s energy consumption and has enormous potentials in creation of sustainable living environment and a high-quality dwelling condition. The primary aim of this research is to create a new sustainable architecture design method for occupancy by integrating openplan housing theory and application of sustainable technologies. Numerical simulation by computer program is applied in order to investigate and evaluate the possibility of this method in teruas of improving indoor comfort level and energy-saving capacity.展开更多
Changeful and complex rural family structure and climatic features of transitional areas in China make the application of variable strategy in energy-saving rural residence designs possible.Aiming at the low cost,seve...Changeful and complex rural family structure and climatic features of transitional areas in China make the application of variable strategy in energy-saving rural residence designs possible.Aiming at the low cost,several effective and reasonable variable strategies were proposed for the design of interior spaces,main bedroom,sunshine room,staircase,west wall,door and window design to satisfy changing structure of a family during different periods and their different thermo-technical requirements in winter and summer.In this way,thermal comfort of rural indoor spaces will be improved,more energy saved,useful experience and thoughts provided for the energy-saving residence design in cold regions and regions hot in summer and cold in winter.展开更多
Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the ac...Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the actual conditions about the ore-bodies,we have made the initial decision to adopt reconstruction of roof downward sublevel cut-and-fill mining.The men work safely under the false roof supporting the top plate.However,the difficult problem is how to determine the strength of the false roof.In this case,the method based on reliability theory has been put forward.Combined with elastic mechanics and field practice,when practical value of reliable probability is 90 %,the value of the false roof strength has been calculated,and the study shows that stope span greatly influences the false roof strength.With the strength of artificial roof,the reasonable reinforcement design ensures the false roof which can supply the demand of strength under large span and load.展开更多
With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while...With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while improving the living standard.While,the emergence of the ecological roof can greatly improve the urban ecological environment and make full use of the architectural space.On the premise of analyzing the current status and significance of research on the ecological roof,this paper puts forward some ideas about the research on the design of the ecological roof with intelligent management system which can be used as a reference for the design of the ecological roof in the future,based on giving full consideration to the factors of ecological energy-saving,environmental protection,economic development,etc.,and summarizing the shortcomings of the traditional ecological roof.展开更多
With roof garden design as the background, functions of roof garden, influencing factors of design, and design principles were analyzed, and development trends of roof garden design were further explored.
Green,energy conservation and environmental protection have increasingly become the theme of the sustained and healthy development of cities against the background of new urbanization,which indicates that the problem ...Green,energy conservation and environmental protection have increasingly become the theme of the sustained and healthy development of cities against the background of new urbanization,which indicates that the problem of building energy consumption has received growing attention.This paper explores the impact of energy-saving decorations in flexible interior space on energy-saving effect of buildings so as to broaden the horizon of energy conservation in building,thereby alleviating the problem of energy shortage in China.展开更多
The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requireme...The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requirement to promote the healthy and orderly operation of the existing building energy-saving transformation market.This paper summarizes the practical experience of developing ESCO driving force operation in foreign existing building energy-saving transformation market,analyzes the bottleneck of developing ESCO driving force operation in China’s existing building energy-saving transformation market,and puts forward useful practical enlightenment based on the comparison between home and abroad;According to the optimization principle of ESCO driving force operation in the development of existing building energy-saving transformation market,the optimization design framework of ESCO driving force is proposed,and the implementation strategy of ESCO driving force optimization in the development of existing building energy-saving transformation market is planned.In order to optimize and improve the effectiveness of the operation and development of the energy-saving transformation market of existing buildings with the internal driving force of ESCO.展开更多
This article explores the constraints in the landscape design of roof gardens of public buildings. Based on this,the constituent elements of the roof landscape of public buildings and the cultural ties connecting the ...This article explores the constraints in the landscape design of roof gardens of public buildings. Based on this,the constituent elements of the roof landscape of public buildings and the cultural ties connecting the elements are studied in detail. Exploring diverse landscape design of roof gardens of public buildings can not only make full use of the building space but also bring more economic,social and ecological benefits.展开更多
Green roof technology and implementation are taking root in North America at an accelerating pace.Growing recogni-tion of the benefits of green roofs and increasing interest in green infrastructure are leading to expa...Green roof technology and implementation are taking root in North America at an accelerating pace.Growing recogni-tion of the benefits of green roofs and increasing interest in green infrastructure are leading to expansion of green roof tech-nologies that have been in use for decades in Europe and elsewhere.While some regions have adopted the use of green roofs on a large scale,other areas are warming up to the concept more slowly.Large-scale implementation of green roofs has not yet occurred in Indiana,but a number of exemplary projects have been constructed,and there are signs that interest in the technology is increasing in the state.The purpose of this article is to provide an overview of green roof technology,analyze selected green roofs in Indiana,explore trends in the state,and address issues for future development of green roof technol-ogy in the region.A variety of green roofs were investigated throughout the state.Discussions were held with individuals involved in each project to obtain technical and logistical details of green roof design,installation,and performance.展开更多
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an...Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.展开更多
Taking the design of Ningdu Talent Apartment for example,active eco-design at the origin of design—design of building scheme was elaborated,including overall layout,planar design,eco-interface design,building environ...Taking the design of Ningdu Talent Apartment for example,active eco-design at the origin of design—design of building scheme was elaborated,including overall layout,planar design,eco-interface design,building environment and outer space design,sun-shading design.Implementation of ecological and energysaving concepts in building scheme was reviewed.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler f...Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler foundation and beam model,the current study presents a static analysis of the model,thus permitting acquisition of a theoretical formula pertaining to roof convergence.Through use of working face 6304-1(Jisan Colliery) as the research setting,the association between roof convergence magnitude and both packwall strength and width have been elucidated.Based upon observed conditions at the working face,realistic packwall parameters have been formulated,with numerical simulation results and field application results indicating that design parameters garnered from the developed formula successfully adapted to local geological movement and deformation.Accordingly,roadway deformation was shown to be within the permissible range,thus satisfying mine production requirements.The proposed method in the current study may give a design basis for pack design in the context of SBM under similar conditions.展开更多
At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful ...At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful to develop a design guideline related to the evaluation of lighting energy saving potential and sunlight design strategies. This paper analyzes the impacts of different artificial lighting control methods and design parameters on daylighting. A direct correlation between lighting energy consumption and parameters such as orientations,window to wall ratio (WWR) and perimeter depth is established. A simplified prediction model is proposed to estimate lighting energy consumption with the given perimeter depth,WWR,and window transparency. Validation of the model is carried out compared with detailed lighting simulation software for an office building. After the variation analysis for these parameters,design advises for the daylighting design at scheme design phase are summarized.展开更多
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
文摘The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.
文摘Interior landscape design reflects human psychological and physical needs on living and working environment, this paper from the perspective of dynamics of interior landscape design and design concept of dynamic ceiling explored the means of meeting dynamic psychological needs of users, and the coordination between interior landscape design and energy-saving design of principal buildings.
文摘Energy-saving design of residential building is an important part of energy-saving architectural design. Planning and design of residential buildings in Hanzhong area should pay more attention to the building orientation, sunshine, summer ventilation and wind resistance in winter and so on, so as to create favorable conditions for energy-saving design of single buildings. The geographical location, climatic characteristics, residents living habits and indoor and outdoor thermal environment situation were analyzed in this paper, and combined with the existing problems of energy conservation in the planning and layout of residential buildings in Hanzhong area. Based on the investigation, this paper drew some conclusions to provide references for the energy-saving planning and design of urban residential buildings in the local area.
文摘With the increasing requirement of a higher living quality and the growing awareness of energy saving, how to improve the indoor comfort level and to reduce the expenditure of energy and slow down the rate of natural resource consumption is becoming increasingly important. The theory of open-plan housing is able to provide a more flexible and adaptive space for the users and bring sustainable and economic benefit in the way of making full use of construction materials. Sustainable architecture design, as a method to respond the phenomenon, is able to low down the building' s energy consumption and has enormous potentials in creation of sustainable living environment and a high-quality dwelling condition. The primary aim of this research is to create a new sustainable architecture design method for occupancy by integrating openplan housing theory and application of sustainable technologies. Numerical simulation by computer program is applied in order to investigate and evaluate the possibility of this method in teruas of improving indoor comfort level and energy-saving capacity.
基金Supported by 2009 Scientific and Technological Program of Zhengzhou Provincial Department of Science and Technology:Study on the Optimal Energy-Conservation Design of Low-cost Rural Residences in Henan Province2011 Undergraduates' Innovative Program of North China University of Water Resources and Electric Power:Study on the Energy-Conservation Design of Regional Rural Residences in Henan Province
文摘Changeful and complex rural family structure and climatic features of transitional areas in China make the application of variable strategy in energy-saving rural residence designs possible.Aiming at the low cost,several effective and reasonable variable strategies were proposed for the design of interior spaces,main bedroom,sunshine room,staircase,west wall,door and window design to satisfy changing structure of a family during different periods and their different thermo-technical requirements in winter and summer.In this way,thermal comfort of rural indoor spaces will be improved,more energy saved,useful experience and thoughts provided for the energy-saving residence design in cold regions and regions hot in summer and cold in winter.
基金"973 " Subjects (No. 2010CB732004)National Natural Science Foundation Project (No.50934006)
文摘Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the actual conditions about the ore-bodies,we have made the initial decision to adopt reconstruction of roof downward sublevel cut-and-fill mining.The men work safely under the false roof supporting the top plate.However,the difficult problem is how to determine the strength of the false roof.In this case,the method based on reliability theory has been put forward.Combined with elastic mechanics and field practice,when practical value of reliable probability is 90 %,the value of the false roof strength has been calculated,and the study shows that stope span greatly influences the false roof strength.With the strength of artificial roof,the reasonable reinforcement design ensures the false roof which can supply the demand of strength under large span and load.
文摘With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while improving the living standard.While,the emergence of the ecological roof can greatly improve the urban ecological environment and make full use of the architectural space.On the premise of analyzing the current status and significance of research on the ecological roof,this paper puts forward some ideas about the research on the design of the ecological roof with intelligent management system which can be used as a reference for the design of the ecological roof in the future,based on giving full consideration to the factors of ecological energy-saving,environmental protection,economic development,etc.,and summarizing the shortcomings of the traditional ecological roof.
基金Supported by Talent Initiation Program of Zhejiang A&F University(2034020070)
文摘With roof garden design as the background, functions of roof garden, influencing factors of design, and design principles were analyzed, and development trends of roof garden design were further explored.
基金Sponsored by Education Science Project of the 13th Five-Year Plan of Jiangxi Province(16YB041)
文摘Green,energy conservation and environmental protection have increasingly become the theme of the sustained and healthy development of cities against the background of new urbanization,which indicates that the problem of building energy consumption has received growing attention.This paper explores the impact of energy-saving decorations in flexible interior space on energy-saving effect of buildings so as to broaden the horizon of energy conservation in building,thereby alleviating the problem of energy shortage in China.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)
文摘The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requirement to promote the healthy and orderly operation of the existing building energy-saving transformation market.This paper summarizes the practical experience of developing ESCO driving force operation in foreign existing building energy-saving transformation market,analyzes the bottleneck of developing ESCO driving force operation in China’s existing building energy-saving transformation market,and puts forward useful practical enlightenment based on the comparison between home and abroad;According to the optimization principle of ESCO driving force operation in the development of existing building energy-saving transformation market,the optimization design framework of ESCO driving force is proposed,and the implementation strategy of ESCO driving force optimization in the development of existing building energy-saving transformation market is planned.In order to optimize and improve the effectiveness of the operation and development of the energy-saving transformation market of existing buildings with the internal driving force of ESCO.
基金Humanities and Social Sciences Research Project for Colleges and Universities in Jiangxi Province(JC161017)Youth Growth Fund of Jiangxi Normal University
文摘This article explores the constraints in the landscape design of roof gardens of public buildings. Based on this,the constituent elements of the roof landscape of public buildings and the cultural ties connecting the elements are studied in detail. Exploring diverse landscape design of roof gardens of public buildings can not only make full use of the building space but also bring more economic,social and ecological benefits.
文摘Green roof technology and implementation are taking root in North America at an accelerating pace.Growing recogni-tion of the benefits of green roofs and increasing interest in green infrastructure are leading to expansion of green roof tech-nologies that have been in use for decades in Europe and elsewhere.While some regions have adopted the use of green roofs on a large scale,other areas are warming up to the concept more slowly.Large-scale implementation of green roofs has not yet occurred in Indiana,but a number of exemplary projects have been constructed,and there are signs that interest in the technology is increasing in the state.The purpose of this article is to provide an overview of green roof technology,analyze selected green roofs in Indiana,explore trends in the state,and address issues for future development of green roof technol-ogy in the region.A variety of green roofs were investigated throughout the state.Discussions were held with individuals involved in each project to obtain technical and logistical details of green roof design,installation,and performance.
基金Projects(50934002,51074013,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.
文摘Taking the design of Ningdu Talent Apartment for example,active eco-design at the origin of design—design of building scheme was elaborated,including overall layout,planar design,eco-interface design,building environment and outer space design,sun-shading design.Implementation of ecological and energysaving concepts in building scheme was reviewed.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金financial support from the Fundamental Research Funds for the Central Universities(China University of Mining and Technology)under Grant 2014ZDPY02Qing Lan Project
文摘Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler foundation and beam model,the current study presents a static analysis of the model,thus permitting acquisition of a theoretical formula pertaining to roof convergence.Through use of working face 6304-1(Jisan Colliery) as the research setting,the association between roof convergence magnitude and both packwall strength and width have been elucidated.Based upon observed conditions at the working face,realistic packwall parameters have been formulated,with numerical simulation results and field application results indicating that design parameters garnered from the developed formula successfully adapted to local geological movement and deformation.Accordingly,roadway deformation was shown to be within the permissible range,thus satisfying mine production requirements.The proposed method in the current study may give a design basis for pack design in the context of SBM under similar conditions.
基金Project(2006BAJ02A02) supported by the National Key Technologies R & D Program of China
文摘At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful to develop a design guideline related to the evaluation of lighting energy saving potential and sunlight design strategies. This paper analyzes the impacts of different artificial lighting control methods and design parameters on daylighting. A direct correlation between lighting energy consumption and parameters such as orientations,window to wall ratio (WWR) and perimeter depth is established. A simplified prediction model is proposed to estimate lighting energy consumption with the given perimeter depth,WWR,and window transparency. Validation of the model is carried out compared with detailed lighting simulation software for an office building. After the variation analysis for these parameters,design advises for the daylighting design at scheme design phase are summarized.