期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparative Analysis of the Distribution Characteristics of Floor Stress Field between Gob-Side Entry Retaining with Roof Cutting and Conventional Mining
1
作者 Weifeng Xue Chaoyang Liu +3 位作者 Chao Li Yongguang Chen Xiaoping Xi Feng Wang 《Journal of Geoscience and Environment Protection》 2022年第12期17-28,共12页
All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure ... All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). 展开更多
关键词 roof Cutting and pressure relief Gob-Side Entry Retaining Floor Stress Field Stress Concentration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部