This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaC...This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaCO3 as a stabilizer,and straw(for strengthening).The availability of raw materials for making Adobe presents the waste-stabilized Adobe as a potential product for a new alkali-activated binder.Waste-stabilized Adobe collected from an abandoned damaged building in the village of Inonu in Northern Cyprus,ground and calcined at the following temperatures:450,550,650,750,850,and 950℃.The calcination at each temperature was held for different durations 1,3,5,and 7 h.Raw and calcined waste stabilized Adobe structures were investigated using XRF,TGA-DTA,XRD,FTIR,and SEM.Considering technical and environmental views related to energy consumption,waste stabilized Adobe calcined at 750℃ for 1 h presented the most promising results regarding the production of a new precursor for alkali-activated binder.This study also presents the effect of ground granulated blast furnace slag(GGBFS)usage on the fresh and hardened properties of optimum calcined AB-based alkali-activated pastes cured at room temperature.GGBFS was used to partially replace AB to form a binary composite raw material system and seven experimental groups were designed according to replacement levels of 0%,5%,10%,15%,20%,25%and 30%(by mass).Alkali-activated high volume waste-stabilized Adobe-slag pastes prepared using Na2SiO3-to-NaOH ratio of 2 and 12 M concentration of Sodium Hydroxide.The fresh property as flowability and the hardened property as the compressive strength of the alkali-activated pastes with different GGBFS contents were investigated.The results indicated that the incorporation of GGBFS increased the flowability of fresh alkali-activated pastes.A 28-day compressive strength of 43.75 MPa can be obtained by a 30%replacement level of GGBFS.展开更多
Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of t...Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.展开更多
Superhydrophobic materials are severely limited in their applications due to their weak mechanical properties and complex preparation process.In this paper,polystyrene/fluorinated silica(PS/SiO_(2))superhydrophobic co...Superhydrophobic materials are severely limited in their applications due to their weak mechanical properties and complex preparation process.In this paper,polystyrene/fluorinated silica(PS/SiO_(2))superhydrophobic composite coatings were prepared on the surface of 304 stainless steel using a simple one-step spraying method.The effects of different PS contents on the wettability as well as the wear properties of the samples were investigated.SiO_(2) was encapsulated in polystyrene to form a structure similar to cement encapsulated stones.With the addition of PS,a mound-like structure was formed on the sample surface,and a more optimized micro–nano structure was obtained when the content of PS was 0.6 g.At this time,the sample exhibited excellent wettability with a contact angle of 157.86°and a sliding angle of 0.84°.In addition,the contact angle of 151.09°was achieved after 180 cm of friction under a 100 g load and the composite coating prepared by this method also has excellent chemical stability,water impact resistance,corrosion resistance,and self-cleaning properties.This opens up new possibilities for the development of simple and robust superhydrophobic materials.展开更多
Efficient polymeric room-temperature phosphorescence(PRTP)with excellent processability and flexibility is highly desirable but still faces formidable challenge.Herein,a general strategy is developed for efficient PRT...Efficient polymeric room-temperature phosphorescence(PRTP)with excellent processability and flexibility is highly desirable but still faces formidable challenge.Herein,a general strategy is developed for efficient PRTP through photo-polymerization of phosphor monomers and N-isopropylacrylamide(NIPAM)spontaneously without a crosslinker.Remarkably ultralong lifetime of 3.54 s with afterglow duration time of 25 s and decent phosphorescent quantum efficiency of 13%are achieved.This efficient PRTP has been demonstrated to be derived from the synergistic effect of the covalent and hydrogen bonds networks formed through photo-polymerization of NIPAM.The electron paramagnetic resonance(EPR)spectra confirmed that methyl radicals are generated under the irradiation of ultraviolet light and promote the formation of covalent cross-linking networks.This strategy has also been proved to be generalizable to several other phosphor monomers.Interestingly,the polymer films display ultrahigh temperature resistance with long afterglows even at 140℃ and unexampled ultralong lifetime of 2.45 s in aqueous solutions.This work provides a simple and feasible avenue to obtain efficient PRTP.展开更多
文摘This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaCO3 as a stabilizer,and straw(for strengthening).The availability of raw materials for making Adobe presents the waste-stabilized Adobe as a potential product for a new alkali-activated binder.Waste-stabilized Adobe collected from an abandoned damaged building in the village of Inonu in Northern Cyprus,ground and calcined at the following temperatures:450,550,650,750,850,and 950℃.The calcination at each temperature was held for different durations 1,3,5,and 7 h.Raw and calcined waste stabilized Adobe structures were investigated using XRF,TGA-DTA,XRD,FTIR,and SEM.Considering technical and environmental views related to energy consumption,waste stabilized Adobe calcined at 750℃ for 1 h presented the most promising results regarding the production of a new precursor for alkali-activated binder.This study also presents the effect of ground granulated blast furnace slag(GGBFS)usage on the fresh and hardened properties of optimum calcined AB-based alkali-activated pastes cured at room temperature.GGBFS was used to partially replace AB to form a binary composite raw material system and seven experimental groups were designed according to replacement levels of 0%,5%,10%,15%,20%,25%and 30%(by mass).Alkali-activated high volume waste-stabilized Adobe-slag pastes prepared using Na2SiO3-to-NaOH ratio of 2 and 12 M concentration of Sodium Hydroxide.The fresh property as flowability and the hardened property as the compressive strength of the alkali-activated pastes with different GGBFS contents were investigated.The results indicated that the incorporation of GGBFS increased the flowability of fresh alkali-activated pastes.A 28-day compressive strength of 43.75 MPa can be obtained by a 30%replacement level of GGBFS.
文摘Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.
基金This study was supported by the National Natural Science Foundation of China(Grant Number 52172090 and 52071159).
文摘Superhydrophobic materials are severely limited in their applications due to their weak mechanical properties and complex preparation process.In this paper,polystyrene/fluorinated silica(PS/SiO_(2))superhydrophobic composite coatings were prepared on the surface of 304 stainless steel using a simple one-step spraying method.The effects of different PS contents on the wettability as well as the wear properties of the samples were investigated.SiO_(2) was encapsulated in polystyrene to form a structure similar to cement encapsulated stones.With the addition of PS,a mound-like structure was formed on the sample surface,and a more optimized micro–nano structure was obtained when the content of PS was 0.6 g.At this time,the sample exhibited excellent wettability with a contact angle of 157.86°and a sliding angle of 0.84°.In addition,the contact angle of 151.09°was achieved after 180 cm of friction under a 100 g load and the composite coating prepared by this method also has excellent chemical stability,water impact resistance,corrosion resistance,and self-cleaning properties.This opens up new possibilities for the development of simple and robust superhydrophobic materials.
基金supported by the National Natural Science Foundation of China(22175149,21975215)the Natural Science Foundation of Hunan Province(2021JJ30661)the Scientific Research Foundation of Hunan Provincial Education Department(19A486)。
文摘Efficient polymeric room-temperature phosphorescence(PRTP)with excellent processability and flexibility is highly desirable but still faces formidable challenge.Herein,a general strategy is developed for efficient PRTP through photo-polymerization of phosphor monomers and N-isopropylacrylamide(NIPAM)spontaneously without a crosslinker.Remarkably ultralong lifetime of 3.54 s with afterglow duration time of 25 s and decent phosphorescent quantum efficiency of 13%are achieved.This efficient PRTP has been demonstrated to be derived from the synergistic effect of the covalent and hydrogen bonds networks formed through photo-polymerization of NIPAM.The electron paramagnetic resonance(EPR)spectra confirmed that methyl radicals are generated under the irradiation of ultraviolet light and promote the formation of covalent cross-linking networks.This strategy has also been proved to be generalizable to several other phosphor monomers.Interestingly,the polymer films display ultrahigh temperature resistance with long afterglows even at 140℃ and unexampled ultralong lifetime of 2.45 s in aqueous solutions.This work provides a simple and feasible avenue to obtain efficient PRTP.