Ceria(CeO_2) nanocubes were synthesized by a hydrothermal method and weak ferromagnetism was observed in room temperature. After ultraviolet irradiation, the saturation magnetization was significantly enhanced from*3....Ceria(CeO_2) nanocubes were synthesized by a hydrothermal method and weak ferromagnetism was observed in room temperature. After ultraviolet irradiation, the saturation magnetization was significantly enhanced from*3.18×10^(-3) to *1.89×10^(-2) emug^(-1). This is due to the increase of oxygen vacancies in CeO_2 structure which was confirmed by X-ray photoelectron spectra. The first-principle calculation with Vienna ab-initio simulation package was used to illustrate the enhanced ferromagnetism mechanism after calculating the density of states(DOSs) and partial density of states(PDOSs) of CeO_2 without and with different oxygen vacancies. It was found that the increase of oxygen vacancies will enlarge the PDOSs of Ce 4f orbital and DOSs. Two electrons in one oxygen vacancy are respectively excited to 4f orbital of two Ce atoms neighboring the vacancy, making these electron spin directions on 4f orbitals of these two Ce atoms parallel. This superexchange interaction leads to the formation of ferromagnetism in CeO_2 at room temperature. Our work indicates that ultraviolet irradiation is an effective method to enhance the magnetism of CeO_2 nanocube, and the firstprinciple calculation can understand well the enhanced magnetism.展开更多
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size...Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).展开更多
Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at roo...Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at room temperature.However,how to obtain a large room-temperature negative MR effect in them remains to be studied.In this paper,by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side,we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment,but not in a static low magnetic field environment.Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory,we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field.This theoretical analytical model is further confirmed by regulating the geometry size of the device.Our work sheds light on the development of novel magnetic sensing,magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.展开更多
Fe-doped In2O3 films are grown epitaxially on YSZ (100) substrates by pulsed laser deposition. The in-situ reflection high-energy electron diffraction, the atomic force microscopy, and the x-ray diffraction patterns...Fe-doped In2O3 films are grown epitaxially on YSZ (100) substrates by pulsed laser deposition. The in-situ reflection high-energy electron diffraction, the atomic force microscopy, and the x-ray diffraction patterns show that the films have a well defined cubic structure epitaxially oriented in the (100) direction. Room temperature ferromagnetism is observed by an alternating gradient magnetometer. Strong perpendicular magnetic anisotropy with a remnant magnetization ratio of 0.83 and a coercivity of 2,5 kOe is revealed. Both the structural and the magnetic measurements suggest that this ferromagnetism is an intrinsic property deriving from the spin-orbit coupling between the diluted Fe atoms.展开更多
Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(C...Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(Cu2O)1-x deposition. Room-temperature ferromagnetism(FM) is found in all of the samples. The saturated magnetization increases at first and then decreases with the decrease of x. The photoluminescence spectra show that the magnetization is closely correlated with the Cu vacancies in the Cux(Cu2O)1-x granular films. Fundamentally, the FM could be understood by the Stoner model based on the charge transfer mechanism. These results may provide solid evidence and physical insights on the origin of FM in the Cu2O-based oxides diluted magnetic semiconductors, especially for systems without intentional magnetic atom doping.展开更多
Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the most promising candidates for next-generation low-cost, high-performance and nano-scale spintronic applications such as spin field-effect t...Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the most promising candidates for next-generation low-cost, high-performance and nano-scale spintronic applications such as spin field-effect transistors and quantum computation/communication. However, as one of the 125 important scientific issues raised by Science journal in 2005 that "is it possible to create magnetic semiconductors that work at room temperature?", how to achieve a feasible ferromagnetic semiconductor with high Curie temperature is still a long-standing challenge despite of tremendous efforts have been devoted in this field since 1960s. The recent discovery of 2D ferromagnetic semiconductors Cr2Ge2Te6 and CrI3 has evoked new research interests in 2D intrinsic ferromagnetic semiconductors. But the low Curie temperature (<45 K) of these materials is still badly hindering their industrial applications.展开更多
Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D-D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the con...Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D-D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.展开更多
We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFe2O3-δ (x=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According...We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFe2O3-δ (x=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (x=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (x=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.展开更多
Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline ...Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline hcp wurtzite crystal structure of ZnO is evolved. The material consists of a large number of defects such as oxygen vacancy (Ov) and zinc interstitial (Zi). The magnetization study reveals that the sample exhibits room-temperature global ferromagnetism and the ferromagnetic ordering seems to be defect induced via bound magnetic polaron mechanism, and double exchange is also expected to have played role. Interesting optoelectronic properties have been found in the synthesized sample and the material seems to be a potential candidate to be used as a UV sensor. Such a transition metal doped ZnO based dilute magnetic semiconducting system exhibiting room-temperature ferromagnetism is likely to be first of its kind in the sense that such materials have not yet been reported to be synthesized by the simple method of electrodeposition to the best of our knowledge on the basis of ample literature review.展开更多
The possibility to induce a macroscopic magnetic moment in lead halide perovskites(LHPs),combined with their excellent optoelectronic properties,is of fundamental interest and has promising spintronic applications.How...The possibility to induce a macroscopic magnetic moment in lead halide perovskites(LHPs),combined with their excellent optoelectronic properties,is of fundamental interest and has promising spintronic applications.However,these possibilities remain an open question in both theory and experiment.Here,theoretical and experimental studies are performed to explore ferromagnetic states in LHPs originated from lattice defects.First-principle calculations reveal that shallow-level Br vacancies in defective CsPbBr3 can produce spin-splitting states and the coupling between them leads to a ferromagnetic ground state.Experimentally,ferromagnetism at 300 K is observed in room-temperature synthesized CsPbBr3 nanocrystals,but is not observed in hot-injection prepared CsPbBr3 quantum dots and in CsPbBr3 single crystals,highlighting the significance played by vacancy defects.Furthermore,the ferromagnetism in the CsPbBr3 nanocrystals can be enhanced fourfold with Ni2+ion dopants,due to enhancement of the exchange coupling between magnetic polarons.Room-temperature ferromagnetism is also observed in other LHPs,which suggests that vacancy-induced ferromagnetism may be a universal feature of solution-processed LHPs,which is useful for future spintronic devices.展开更多
N-doped In_(2)O_(3) films were deposited on fused quartz substrates by radio-frequency magnetron sputtering with different N_(2) flux.X-ray diffraction patterns,x-ray photoelectron spectroscopy and the optical transmi...N-doped In_(2)O_(3) films were deposited on fused quartz substrates by radio-frequency magnetron sputtering with different N_(2) flux.X-ray diffraction patterns,x-ray photoelectron spectroscopy and the optical transmittance spectra indicate that nitrogen has incorporated into the In_(2)O_(3) lattice.Room-temperature d^(0) ferromagnetism is observed in all the films.The saturation magnetization increases from 0.73 to 3.5 emu/cm^(3) when the N_(2) flux varies from 0 to 10 sccm.The concordant results in structural,compositional,optical and magnetic properties suggest that this d^(0) ferromagnetism is associated with the N incorporation and may be mediated by the long-range p–p interaction between the N 2p states.展开更多
Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectrosco...Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd^(3+)-vacancy complexes through percolation-bound magnetic polarons.展开更多
Nanosized FeCo- and FeCu-codoped ZnO particles were synthesized by rheological phase reaction-precursor method and the thermal decomposition of oxalate precursors was studied by thermogravimetry and differential therm...Nanosized FeCo- and FeCu-codoped ZnO particles were synthesized by rheological phase reaction-precursor method and the thermal decomposition of oxalate precursors was studied by thermogravimetry and differential thermal analysis in air atmosphere. X-ray analysis revealed that the FeCo- and FeCu-codoped ZnO crystallize in a wurtzite structure. Further characterization by HRTEM showed that no FeCo, FeCu clusters and other secondary phases were found in the samples. X-ray photoelectron spectroscopy and absorption spectra results indicated that Fe and Cu were mainly likely to have nominal Fe3+ and Cu+ and Co successfully incorporated into the wurtzite configurations, 2+ lattice at the Zn2+ sites. Curie temperature above room temperatures was observed from the FeCo- and FeCu-codoped ZnO nanoparticles. The origin of the observed ferromagnetism in the FeCo- and FeCu-codoped ZnO nanoparticles can be explained by Ruderman-Kittel-Kasuya-Yosida-type exchange mediated under the conduction carriers and the double-exchange-like interaction, respectively.展开更多
Two-dimensional(2D)magnetic semiconductors are crucial in spin-based information-processing technologies due to the combination of the strong 2D quantum effects,surface effects and the control of spin states.However,m...Two-dimensional(2D)magnetic semiconductors are crucial in spin-based information-processing technologies due to the combination of the strong 2D quantum effects,surface effects and the control of spin states.However,most experimental approaches for tuning 2D magnets achieve pure ferromagnetism at low temperature.Herein,a defect engineering strategy using supercritical CO2 is introduced to achieve nanostructure with abundant defects for 2D MoO3−x,and room-temperature ferromagnetism can be obtained and tuned by introduction of the Mo5+ion depending on the change of supercritical pressure.In defective regions,the presence of the pentacoordinated[Mo5+O5]centers can achieve ferromagnetic ordering resulting in room-temperature ferromagnetism.With increasing supercritical pressure,it is easier for the supercritical CO2 to break the Mo–O bonds,achieving enhancement of the ferromagnetic performance with desired Curie temperature(>380 K).The magnetic responses in the MoO3−x system provide a step closer to the expansion of spin electronics.展开更多
Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and R...Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and Raman spectroscopy are employed to characterize the microstructural properties of these films. Room temperature ferromagnetism is observed by superconducting quantum interference device (SQUID). The results indicate that Mn doping introduces the incorporation of Mn^2+ ions into the ZnO host matrix and the insertion of Mn^2+ ions increases the lattice defects, which is correlated with the ferromagnetism of the obtained films. The doping concentration is also proven to be a crucial factor for obtaining highly ferromagnetic Zn1-xMnxO films.展开更多
A series of La0.7-xSmxSr0.3MnO3, La0.7-xGdxSr0.3MnO3, and La0.7-xDyxSr0.3MnO3 (x=0.00, 0.10, 0.20, 0.30) samples were prepared by the solid-state reaction method. The influence of the substitution of Sm, Gd, and Dy ...A series of La0.7-xSmxSr0.3MnO3, La0.7-xGdxSr0.3MnO3, and La0.7-xDyxSr0.3MnO3 (x=0.00, 0.10, 0.20, 0.30) samples were prepared by the solid-state reaction method. The influence of the substitution of Sm, Gd, and Dy for La on the magnetic and electric properties and on the magnetoresistance (MR) was studied through measurements of M-T curves and p-T curves. The results showed that: lattice distortion induced by substitution of Sm, Gd, and Dy for La and extra magnetism of substitution had great influence on the magnetic and electric properties of pcrovskite manganites; substitution of magnetic rare earth element for La was an effective way to change Curie temperature and to strengthen MR in perovskite manganites; and appropriate substitution proportion would generate large MR near room temperature.展开更多
La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were stud...La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of p-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.展开更多
To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism(RTFM)in cobalt doped TiO_(2)(Co-TiO_(2)),and in order to obtain the high level of magnetization suitable for spintronic devices,in thi...To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism(RTFM)in cobalt doped TiO_(2)(Co-TiO_(2)),and in order to obtain the high level of magnetization suitable for spintronic devices,in this work,Co-TiO_(2) nano-particles are prepared via the sol-gel route,followed by vacuum annealing for different durations,and the influence of vacu-um annealing duration on the structure and room-temperature magnetism of the compounds is examined.The results reveal that with an increase in annealing duration,the concentration of oxygen vacancies rises steadily,while the saturation magnetiza-tion(Ms)shows an initial gradual increase,followed by a sharp decline,and even disappearance.The maximum Ms is as high as 1.19 emu/g,which is promising with respect to the development of spintronic devices.Further analysis reveals that oxygen va-cancies,modulated by annealing duration,play a critical role in tuning room-temperature magnetism.An appropriate concentra-tion of oxygen vacancies is beneficial in terms of promoting RTFM in Co-TiO_(2).However,excessive oxygen vacancies will result in a negative impact on RTFM,due to antiferromagnetic superexchange interactions originating from nearest-neighbor Co^(2+)ions.展开更多
Recent experimental and theoretical work has focused on two-dimensional van der Waals(2D vdW)magnets due to their potential applications in sensing and spintronics devises.In measurements of these emerging materials,c...Recent experimental and theoretical work has focused on two-dimensional van der Waals(2D vdW)magnets due to their potential applications in sensing and spintronics devises.In measurements of these emerging materials,conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials,especially for antiferromagnets with nearly compensated magnetic moments.Here,we investigate the magnetism of 2D antiferromagnet CrPS_(4)with a thickness of 8nm by using dynamic cantilever magnetometry(DCM).展开更多
We investigate the evolution of magnetic properties as well as the content and distribution of Mn for Mn(Sb_(1-x)Bi_(x))_(2)Te_(4) single crystals grown by large-temperature-gradient chemical vapor transport method.It...We investigate the evolution of magnetic properties as well as the content and distribution of Mn for Mn(Sb_(1-x)Bi_(x))_(2)Te_(4) single crystals grown by large-temperature-gradient chemical vapor transport method.It is found that the ferromagnetic MnSb_(2)Te_(4) changes to antiferromagnetism with Bi doping when x≥0.25.Further analysis implies that the occupations of Mn ions at Sb/Bi site Mn_(Sb/Bi) and Mn site Mn_(Mn) have a strong influence on the magnetic ground states of these systems.With the decrease of Mn_(Mn) increase of Mn_(Sb/Bi),the system will favor the ferromagnetic ground state.In addition,the rapid decrease of T_(C/N) with increasing Bi content when x ≤0.25 and the insensitivity of T_(N) to x when x> 0.25 suggest that the main magnetic interaction may change from the Ruderman-Kittel-Kasuya-Yosida type at low Bi doping region to the van-Vleck type in high Bi doped samples.展开更多
基金supported by the National High Technology Research and Development Program(863 program)of China(2015AA034801)NSFC(11204388+2 种基金51402112)the Fundamental Research Funds for the Central Universities(CQDXWL-2014-001 and CQDXWL-2013-012)the large-scale equipment sharing fund of Chongqing University
文摘Ceria(CeO_2) nanocubes were synthesized by a hydrothermal method and weak ferromagnetism was observed in room temperature. After ultraviolet irradiation, the saturation magnetization was significantly enhanced from*3.18×10^(-3) to *1.89×10^(-2) emug^(-1). This is due to the increase of oxygen vacancies in CeO_2 structure which was confirmed by X-ray photoelectron spectra. The first-principle calculation with Vienna ab-initio simulation package was used to illustrate the enhanced ferromagnetism mechanism after calculating the density of states(DOSs) and partial density of states(PDOSs) of CeO_2 without and with different oxygen vacancies. It was found that the increase of oxygen vacancies will enlarge the PDOSs of Ce 4f orbital and DOSs. Two electrons in one oxygen vacancy are respectively excited to 4f orbital of two Ce atoms neighboring the vacancy, making these electron spin directions on 4f orbitals of these two Ce atoms parallel. This superexchange interaction leads to the formation of ferromagnetism in CeO_2 at room temperature. Our work indicates that ultraviolet irradiation is an effective method to enhance the magnetism of CeO_2 nanocube, and the firstprinciple calculation can understand well the enhanced magnetism.
基金supported by the National Natural Science Foundation of China(Grant No.12241403)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).
基金Project supported by the Special Funding for Talents of Three Gorges University(Grant No.8230202)the National Natural Science Foundation of China(Grant No.12274258)National Key R&D Program of China(Grant No.2016YFA0401003).
文摘Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at room temperature.However,how to obtain a large room-temperature negative MR effect in them remains to be studied.In this paper,by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side,we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment,but not in a static low magnetic field environment.Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory,we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field.This theoretical analytical model is further confirmed by regulating the geometry size of the device.Our work sheds light on the development of novel magnetic sensing,magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.
基金Supported by the National Basic Research Program of China under Grant Nos 2007CB924903 and 2009CB929200, and the National Natural Science Foundation of China under Grant Nos 60976073 and 10834001.
文摘Fe-doped In2O3 films are grown epitaxially on YSZ (100) substrates by pulsed laser deposition. The in-situ reflection high-energy electron diffraction, the atomic force microscopy, and the x-ray diffraction patterns show that the films have a well defined cubic structure epitaxially oriented in the (100) direction. Room temperature ferromagnetism is observed by an alternating gradient magnetometer. Strong perpendicular magnetic anisotropy with a remnant magnetization ratio of 0.83 and a coercivity of 2,5 kOe is revealed. Both the structural and the magnetic measurements suggest that this ferromagnetism is an intrinsic property deriving from the spin-orbit coupling between the diluted Fe atoms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104148,51101088,and 51171082)the Tianjin Natural Science Foundation,China(Grant Nos.14JCZDJC37700 and 13JCQNJC02800)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110031110034)the Fundamental Research Funds for the Central Universities,China
文摘Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(Cu2O)1-x deposition. Room-temperature ferromagnetism(FM) is found in all of the samples. The saturated magnetization increases at first and then decreases with the decrease of x. The photoluminescence spectra show that the magnetization is closely correlated with the Cu vacancies in the Cux(Cu2O)1-x granular films. Fundamentally, the FM could be understood by the Stoner model based on the charge transfer mechanism. These results may provide solid evidence and physical insights on the origin of FM in the Cu2O-based oxides diluted magnetic semiconductors, especially for systems without intentional magnetic atom doping.
文摘Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the most promising candidates for next-generation low-cost, high-performance and nano-scale spintronic applications such as spin field-effect transistors and quantum computation/communication. However, as one of the 125 important scientific issues raised by Science journal in 2005 that "is it possible to create magnetic semiconductors that work at room temperature?", how to achieve a feasible ferromagnetic semiconductor with high Curie temperature is still a long-standing challenge despite of tremendous efforts have been devoted in this field since 1960s. The recent discovery of 2D ferromagnetic semiconductors Cr2Ge2Te6 and CrI3 has evoked new research interests in 2D intrinsic ferromagnetic semiconductors. But the low Curie temperature (<45 K) of these materials is still badly hindering their industrial applications.
基金Project supported by the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University(Grant No.LZUMMM2012003)the Open Project of Key Laboratory of Beam Technology and Material Modification of Ministry of Education,Beijing Normal University(Grant No.201204)the Open Project of State Key Laboratory of Crystal Material,Shandong University,China(Grant No.KF1311)
文摘Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D-D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.
基金The work was supported by the Fundamental Research Funds for the Central Universities, SCUT (No.2014ZZ0069) and the National Natural Science Foundation of China (No.21473211 and No.11304098).
文摘We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFe2O3-δ (x=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (x=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (x=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.
基金Project supported by the UGC-DAE,Consortium for Scientific Research,Indore through its CRS project bearing No.CSR-IC/MSRSR-12/CRS-220/2017-18/1301.
文摘Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline hcp wurtzite crystal structure of ZnO is evolved. The material consists of a large number of defects such as oxygen vacancy (Ov) and zinc interstitial (Zi). The magnetization study reveals that the sample exhibits room-temperature global ferromagnetism and the ferromagnetic ordering seems to be defect induced via bound magnetic polaron mechanism, and double exchange is also expected to have played role. Interesting optoelectronic properties have been found in the synthesized sample and the material seems to be a potential candidate to be used as a UV sensor. Such a transition metal doped ZnO based dilute magnetic semiconducting system exhibiting room-temperature ferromagnetism is likely to be first of its kind in the sense that such materials have not yet been reported to be synthesized by the simple method of electrodeposition to the best of our knowledge on the basis of ample literature review.
基金This work was financially supported by NSFC(61725402)the Natural Science Foundation of Jiangsu Province(BK20190475).
文摘The possibility to induce a macroscopic magnetic moment in lead halide perovskites(LHPs),combined with their excellent optoelectronic properties,is of fundamental interest and has promising spintronic applications.However,these possibilities remain an open question in both theory and experiment.Here,theoretical and experimental studies are performed to explore ferromagnetic states in LHPs originated from lattice defects.First-principle calculations reveal that shallow-level Br vacancies in defective CsPbBr3 can produce spin-splitting states and the coupling between them leads to a ferromagnetic ground state.Experimentally,ferromagnetism at 300 K is observed in room-temperature synthesized CsPbBr3 nanocrystals,but is not observed in hot-injection prepared CsPbBr3 quantum dots and in CsPbBr3 single crystals,highlighting the significance played by vacancy defects.Furthermore,the ferromagnetism in the CsPbBr3 nanocrystals can be enhanced fourfold with Ni2+ion dopants,due to enhancement of the exchange coupling between magnetic polarons.Room-temperature ferromagnetism is also observed in other LHPs,which suggests that vacancy-induced ferromagnetism may be a universal feature of solution-processed LHPs,which is useful for future spintronic devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11004149the Tianjin Natural Science Foundation(11JCZDJC22100)the Seed Foundation of Tianjin University.
文摘N-doped In_(2)O_(3) films were deposited on fused quartz substrates by radio-frequency magnetron sputtering with different N_(2) flux.X-ray diffraction patterns,x-ray photoelectron spectroscopy and the optical transmittance spectra indicate that nitrogen has incorporated into the In_(2)O_(3) lattice.Room-temperature d^(0) ferromagnetism is observed in all the films.The saturation magnetization increases from 0.73 to 3.5 emu/cm^(3) when the N_(2) flux varies from 0 to 10 sccm.The concordant results in structural,compositional,optical and magnetic properties suggest that this d^(0) ferromagnetism is associated with the N incorporation and may be mediated by the long-range p–p interaction between the N 2p states.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274003)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Fundamental Research Funds for the Central Universities,China
文摘Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd^(3+)-vacancy complexes through percolation-bound magnetic polarons.
基金Acknowledgment: This work was supported by the National Nature Science Foundation of China (No. 20071026). The authors thank professor ZHANG X. D and Dr. SUN Z. M. for helpful works on measuring the magnetic properties.
文摘Nanosized FeCo- and FeCu-codoped ZnO particles were synthesized by rheological phase reaction-precursor method and the thermal decomposition of oxalate precursors was studied by thermogravimetry and differential thermal analysis in air atmosphere. X-ray analysis revealed that the FeCo- and FeCu-codoped ZnO crystallize in a wurtzite structure. Further characterization by HRTEM showed that no FeCo, FeCu clusters and other secondary phases were found in the samples. X-ray photoelectron spectroscopy and absorption spectra results indicated that Fe and Cu were mainly likely to have nominal Fe3+ and Cu+ and Co successfully incorporated into the wurtzite configurations, 2+ lattice at the Zn2+ sites. Curie temperature above room temperatures was observed from the FeCo- and FeCu-codoped ZnO nanoparticles. The origin of the observed ferromagnetism in the FeCo- and FeCu-codoped ZnO nanoparticles can be explained by Ruderman-Kittel-Kasuya-Yosida-type exchange mediated under the conduction carriers and the double-exchange-like interaction, respectively.
基金the National Natural Science Foundation of China(No.21773216,51173170)the Henan-Provincial and the China-National Natural Science United Foundation(Project No.U2004208).
文摘Two-dimensional(2D)magnetic semiconductors are crucial in spin-based information-processing technologies due to the combination of the strong 2D quantum effects,surface effects and the control of spin states.However,most experimental approaches for tuning 2D magnets achieve pure ferromagnetism at low temperature.Herein,a defect engineering strategy using supercritical CO2 is introduced to achieve nanostructure with abundant defects for 2D MoO3−x,and room-temperature ferromagnetism can be obtained and tuned by introduction of the Mo5+ion depending on the change of supercritical pressure.In defective regions,the presence of the pentacoordinated[Mo5+O5]centers can achieve ferromagnetic ordering resulting in room-temperature ferromagnetism.With increasing supercritical pressure,it is easier for the supercritical CO2 to break the Mo–O bonds,achieving enhancement of the ferromagnetic performance with desired Curie temperature(>380 K).The magnetic responses in the MoO3−x system provide a step closer to the expansion of spin electronics.
基金Supported by the Natural Science Foundation of Hebei Province under Grant No E2006001006, and the Programme for New Century Excellent Talents at the University of the Ministry of Education of China.
文摘Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and Raman spectroscopy are employed to characterize the microstructural properties of these films. Room temperature ferromagnetism is observed by superconducting quantum interference device (SQUID). The results indicate that Mn doping introduces the incorporation of Mn^2+ ions into the ZnO host matrix and the insertion of Mn^2+ ions increases the lattice defects, which is correlated with the ferromagnetism of the obtained films. The doping concentration is also proven to be a crucial factor for obtaining highly ferromagnetic Zn1-xMnxO films.
基金supported by the Key Programme of the National Natural Science Foundation of China (19934003)the Grand Programme of the Natu-ral Science Research of Education Bureau of Anhui Province (ZD2007003-1)+1 种基金 Natural Science Research Programme of Colleges and Universi-ties of Anhui Province (KJ2008A19ZC) Professors’ and Doctors’ Research Foundation of Suzhou College (2006jb02)
文摘A series of La0.7-xSmxSr0.3MnO3, La0.7-xGdxSr0.3MnO3, and La0.7-xDyxSr0.3MnO3 (x=0.00, 0.10, 0.20, 0.30) samples were prepared by the solid-state reaction method. The influence of the substitution of Sm, Gd, and Dy for La on the magnetic and electric properties and on the magnetoresistance (MR) was studied through measurements of M-T curves and p-T curves. The results showed that: lattice distortion induced by substitution of Sm, Gd, and Dy for La and extra magnetism of substitution had great influence on the magnetic and electric properties of pcrovskite manganites; substitution of magnetic rare earth element for La was an effective way to change Curie temperature and to strengthen MR in perovskite manganites; and appropriate substitution proportion would generate large MR near room temperature.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 19934003)the Grand Program of Natural Science Research of Anhui Education Department (No. ZD2007003-1)the Natural Science Research Program of Universities and Colleges of Anhui Province, China (Nos. KJ2008A19ZC, KJ2009B281Z, and KJ2009A053Z)
文摘La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of p-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.
基金supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.201910389022).
文摘To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism(RTFM)in cobalt doped TiO_(2)(Co-TiO_(2)),and in order to obtain the high level of magnetization suitable for spintronic devices,in this work,Co-TiO_(2) nano-particles are prepared via the sol-gel route,followed by vacuum annealing for different durations,and the influence of vacu-um annealing duration on the structure and room-temperature magnetism of the compounds is examined.The results reveal that with an increase in annealing duration,the concentration of oxygen vacancies rises steadily,while the saturation magnetiza-tion(Ms)shows an initial gradual increase,followed by a sharp decline,and even disappearance.The maximum Ms is as high as 1.19 emu/g,which is promising with respect to the development of spintronic devices.Further analysis reveals that oxygen va-cancies,modulated by annealing duration,play a critical role in tuning room-temperature magnetism.An appropriate concentra-tion of oxygen vacancies is beneficial in terms of promoting RTFM in Co-TiO_(2).However,excessive oxygen vacancies will result in a negative impact on RTFM,due to antiferromagnetic superexchange interactions originating from nearest-neighbor Co^(2+)ions.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1602602)the National Natural Science Foundation of China(Grant Nos.12122411 and 12474053)+4 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084)HFIPS Director’s Fund(Grant Nos.2023BR,YZJJ-GGZX-2022-03,and YZJJ202403TS)HFIPS Director’s Fud(Grant No.BJPY2021B05)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures(Grant No.JZHKYPT-2021-08)the High Magnetic Field Laboratory of Anhui Province(Grant No.AHHM-FX2020-02)。
文摘Recent experimental and theoretical work has focused on two-dimensional van der Waals(2D vdW)magnets due to their potential applications in sensing and spintronics devises.In measurements of these emerging materials,conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials,especially for antiferromagnets with nearly compensated magnetic moments.Here,we investigate the magnetism of 2D antiferromagnet CrPS_(4)with a thickness of 8nm by using dynamic cantilever magnetometry(DCM).
基金Project supported by the Beijing Natural Science Foundation (Grant No. Z200005)the National Key R&D Program of China (Grant Nos. 2022YFA1403800 and 2023YFA1406500)+1 种基金the National Natural Science Foundation of China (Grant No. 12274459)Collaborative Research Project of Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology。
文摘We investigate the evolution of magnetic properties as well as the content and distribution of Mn for Mn(Sb_(1-x)Bi_(x))_(2)Te_(4) single crystals grown by large-temperature-gradient chemical vapor transport method.It is found that the ferromagnetic MnSb_(2)Te_(4) changes to antiferromagnetism with Bi doping when x≥0.25.Further analysis implies that the occupations of Mn ions at Sb/Bi site Mn_(Sb/Bi) and Mn site Mn_(Mn) have a strong influence on the magnetic ground states of these systems.With the decrease of Mn_(Mn) increase of Mn_(Sb/Bi),the system will favor the ferromagnetic ground state.In addition,the rapid decrease of T_(C/N) with increasing Bi content when x ≤0.25 and the insensitivity of T_(N) to x when x> 0.25 suggest that the main magnetic interaction may change from the Ruderman-Kittel-Kasuya-Yosida type at low Bi doping region to the van-Vleck type in high Bi doped samples.