期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Root Resorption in Anterior Open Bite Malocclusions Due to Vertical Correction: A Radiometric Pilot Study
1
作者 Suhina Kapoor David Briss +1 位作者 Shuying Jiang Thomas J. Cangialosi 《Open Journal of Orthopedics》 2023年第6期233-245,共13页
Introduction: One of the most common risks of fixed orthodontic therapy is the evidence of root resorption post orthodontic treatment ranging from mild root blunting to severe root resorption of significant portions o... Introduction: One of the most common risks of fixed orthodontic therapy is the evidence of root resorption post orthodontic treatment ranging from mild root blunting to severe root resorption of significant portions of the root structure. The etiology of apical root resorption is multifactorial but largely depends upon the type of orthodontic tooth movement and treatment duration. Study Objective: The primary aim of this study is to examine the association of external apical root resorption and vertical correction in anterior open bite malocclusions using panoramic radiographs for evaluation. Materials and Methods: Pre-treatment and post-treatment panoramic radiographs of 16 patients with anterior open bite malocclusions were scored to assess root resorption of anterior teeth (U/L 3-3). Initial and final root length and total tooth length for U/L 3-3 were measured on panoramic radiographs in Dolphin imaging. Results: Of the 24 pairs of measurements, 7 had a significant p-value (p Conclusions: A statistically significant amount of root resorption was observed, from pre-treatment to post-treatment radiographs. All mandibular anterior teeth except the mandibular right lateral incisors showed evidence of root resorption. 展开更多
关键词 Open bite malocclusion External apical root resorption Open bite closure
下载PDF
Notes from the Underground:Receptor-Like Kinases in Arabidopsis Root Development 被引量:5
2
作者 Michael P.Wierzba Frans E.Tax 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第12期1224-1237,共14页
During plant development, the frequency and context of cell division must be controlled, and cells must differentiate properly to perform their mature functions. In addition, stem cell niches need to be maintained as ... During plant development, the frequency and context of cell division must be controlled, and cells must differentiate properly to perform their mature functions. In addition, stem cell niches need to be maintained as a reservoir for new cells. All of these processes require intercellular signaling, whether it is a cell relaying its position to other cells, or more mature cells signaling to the stem cell niche to regulate the rate of growth. Receptor-like kinases have emerged as a major component in these diverse roles, especially within the Arabidopsis root. In this review, the functions of receptor-like kinase signaling in regulating Arabidopsis root development will be examined in theareas of root apical meristem maintenance, regulation of epidermal cell fate, lateral root development and vascular differentiation. 展开更多
关键词 Lateral root development receptor-like kinases root apical meristem root epidermal patterning vascular development.
原文传递
Receptor-like protein kinase-mediated signaling in controlling root meristem homeostasis 被引量:5
3
作者 Yafen Zhu Chong Hu Xiaoping Gou 《aBIOTECH》 2020年第3期157-168,共12页
Generation of the root greatly benefits higher plants living on land.Continuous root growth and development are achieved by the root apical meristem,which acts as a reservoir of stem cells.The stem cells,on the one ha... Generation of the root greatly benefits higher plants living on land.Continuous root growth and development are achieved by the root apical meristem,which acts as a reservoir of stem cells.The stem cells,on the one hand,constantly renew themselves through cell division.On the other hand,they differentiate into functional cells to form diverse tissues of the root.The balance between the maintenance and consumption of the root apical meristem is governed by cell-to-cell communications.Receptor-like protein kinases(RLKs),a group of signaling molecules localized on the cell surface,have been implicated in sensing multiple endogenous and environmental signals for plant development and stress adaptation.Over the past two decades,various RLKs and their ligands have been revealed to participate in regulating root meristem homeostasis.In this review,we focus on the recent studies about RLK-mediated signaling in regulating the maintenance and consumption of the root apical meristem. 展开更多
关键词 Distal root meristem PEPTIDES Proximal root meristem Receptor-like protein kinases root apical meristem Signal transduction
原文传递
TGA factors promote plant root growth by modulating redox homeostasis or response 被引量:2
4
作者 Xiaochen Hu Liyun Yang +3 位作者 Mengfei Ren Lin Liu Jing Fu Hongchang Cui 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第8期1543-1559,共17页
To identify novel regulators of stem cell renewal,we mined an existing but little explored cell typespecific transcriptome dataset for the Arabidopsis root.A member of the TGA family of transcription factors,TGA8,was ... To identify novel regulators of stem cell renewal,we mined an existing but little explored cell typespecific transcriptome dataset for the Arabidopsis root.A member of the TGA family of transcription factors,TGA8,was found to be specifically expressed in the quiescent center(QC).Mutation in TGA8 caused a subtle root growth phenotype,suggesting functional redundancy with other TGA members.Using a promoter::HGFP transgenic approach,we showed that all TGA factors were expressed in the root,albeit at different levels and with distinct spatial patterns.Mutant analyses revealed that all TGA factors examined contribute to root growth by promoting stem cell renewal,meristem activity,and cell elongation.Combining transcriptome analyses,histochemical assays,and physiological tests,we demonstrated that functional redundancy exists among members of cladesⅡandⅤor those in cladesⅠandⅢ.These two groups of TGA factors act differently,however,as their mutants responded to oxidative stress differently and quantitative reverse transcription polymerase chain reaction assays showed they regulate different sets of genes that are involved in redox homeostasis.Our study has thus uncovered a previously unrecognized broad role and a mechanistic explanation for TGA factors in root growth and development. 展开更多
关键词 Arabidopsis thaliana quiescent center reactive oxygen species redox root apical meristem TGA family
原文传递
Plant stem cells and their regulations in shoot apical meristems 被引量:1
5
作者 Chun-Ming LIU Yuxin HU 《Frontiers in Biology》 CSCD 2010年第5期417-423,共7页
Stem cells in plants,established during embry-ogenesis,are located in the centers of the shoot apical meristem(SAM)and the root apical meristem(RAM).Stem cells in SAM have a capacity to renew themselves and to produce... Stem cells in plants,established during embry-ogenesis,are located in the centers of the shoot apical meristem(SAM)and the root apical meristem(RAM).Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely.Although fully differentiated organs such as leaves do not contain stem cells,cells in such organs do have the capacity to re-establish new stem cells,especially under the induction of phytohormones in vitro.Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia,respectively.This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs. 展开更多
关键词 PLANT stem cell shoot apical meristem root apical meristem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部