Drought is an important abiotic stress factor in cotton production.The root system architecture(RSA)of cotton shows high plasticity which can alleviate drought-related stress under drought stress(DS)conditions;however...Drought is an important abiotic stress factor in cotton production.The root system architecture(RSA)of cotton shows high plasticity which can alleviate drought-related stress under drought stress(DS)conditions;however,this alleviation is cultivar dependent.Therefore,this study estimated the genetic variability of RSA in cotton under DS.Using the paper-based growth system,we assessed the RSA variability in 80 cotton cultivars at the seedling stage,with 0 and10%polyethylene glycol 6000(PEG6000)as the control(CK)and DS treatment,respectively.An analysis of 23 aboveground and root traits in the 80 cotton cultivars revealed different responses to DS.On the 10th day after DS treatment,the degree of variation in the RSA traits under DS(5–55%)was greater than that of CK(5–49%).The 80 cultivars were divided into drought-tolerant cultivars(group 1),intermediate drought-tolerant cultivars(group 2),and drought-sensitive cultivars(group 3)based on their comprehensive evaluation values of drought resistance.Under DS,the root lengthlower,root area-lower,root volume-lower,and root length density-lower were significantly reduced by 63,71,76,and 4%in the drought-sensitive cultivars compared to CK.Notably,the drought-tolerant cultivars maintained their root lengthlower,root area-lower,root volume-lower,and root length density–lower attributes.Compared to CK,the root diameter(0–2 mm)-lower increased by 21%in group 1 but decreased by 3 and 64%in groups 2 and 3,respectively,under DS.Additionally,the drought-tolerant cultivars displayed a plastic response under DS that was characterized by an increase in the root-lower characteristics.Drought resistance was positively correlated with the root area-lower and root length density-lower.Overall,the RSA of the different cotton cultivars varied greatly under DS.Therefore,important root traits,such as the root-lower traits,provide great insights for exploring whether drought-tolerant cotton cultivars can effectively withstand adverse environments.展开更多
To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were ch...To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.展开更多
What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore th...What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore the functional mechanism of nutrient elements during the course of RA construction. The cultivation system of filter paper is utilized to research the effect of nutrient deficiency on the RA of Malus hupehensis (Pamp.) Rehd. There may be eight types of RA. In complete Hogland solution, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root". With the lack of P, K or Ca, the main type of RA is "lateral roots clustering in the upper region primary root", and the "lateral roots clustering in the upper and middle regions of primary root" types of RA decrease. But with shortage of P, the type of lateral roots clustering in the upper and lower regions of primary root increases, and the type of lateral roots clustering in the middle region of primary root decreases, with the types of RA diversified. Under the condition of K deficiency, the type of no lateral root increases and types of lateral roots clustering in the middle region of primary root decrease, and the percentage of such types as "no lateral root", "lateral roots clustering in the upper region of primary root", and "lateral roots clustering in the upper and middle regions of primary root" accounts for 97.9% in all, with the types of RA simplified. With lack of Fe, Mg or Zn, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root", but the type of lateral roots evenly-distributed on primary root increases. The main type of RA is "lateral roots evenlydistributed on primary root", under the condition of N deficiency, and the types of RA turn out to be diversified. There exists a close relation between nutrient deficiency and RA changes. Owing to various forms of nutrient deficiency, correspondingly different types of RA have been produced.展开更多
Soil alkalinity is a major factor that restricts the growth of apple roots.To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia ...Soil alkalinity is a major factor that restricts the growth of apple roots.To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia (alkali-tolerant) and Malus hupehensis (alkali-sensitive), were compared. To understand alkali tolerance of M. prunifolia at the molecular level, transcriptome analysis was performed. When plants were cultured in alkaline conditions for 15 d, the root growth of M. hupehensis with weak alkali tolerance decreased significantly. Analysis of endogenous hormone levels showed that the concentrations of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in M. hupehensis under alkali stress were lower than those in the control. However, the trend for IAA and ZR in M. prunifolia was the opposite. The concentration of abscisic acid (ABA) in the roots of the two apple rootstocks under alkali stress increased, but the concentration of ABA in the roots of M. prunifolia was higher than that in M. hupehensis. The expression of IAA-related genes ARF5, GH3.6, SAUR36, and SAUR32 and the Cytokinin (CTK)-related gene IPT5 in M. prunifolia was higher than those in the control, but the expression of these genes in M. hupehensis was lower than those in the control. The expression of ABA-related genes CIPK1 and AHK1 increased in the two apple rootstocks under alkali stress, but the expression of CIPK1 and AHK1 in M. prunifolia was higher than in M. hupehensis. These results demonstrated that under alkali stress, the increase of IAA, ZR, and ABA in roots and the increase of the expression of related genes promoted the growth of roots and improved the alkali tolerance of apple rootstocks.展开更多
Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied ...Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied the interaction between AMF (Paraglomus occultum) and exogenous PAs, including putrescine (Put), spermidine (Spd) and spermine (Spin) on mycorrhizal development of different parts of root system, plant growth, RSA and carbohydrate concentrations of 6-m-old citrus (Citrus tangerine Hort. ex Tanaka) seedlings. After 14 wk of PAs application, PA-treated mycorrhizal seedlings exhibited better mycorrhizal colonization and numbers of vesicles, arbuscules, and entry points, and the best mycorrhizal status of taproot, first-, second-, and third-order lateral roots was respectively found in mycorrhizal seedlings supplied with Put, Spd and Spm, suggesting that PAs might act as a regulated factor of mycorrhizal development through transformation of root sucrose more into glucose for sustaining mycorrhizal development. AMF usually notably increases RSA traits (taproot length, total length, average diameter, projected area, surface area, volume, and number of first-, second-, and third-order lateral roots) of only PA-treated seedlings. Among the three PA species, greater positive effects on RSA change and plant biomass increment of the seedlings generally rank as Spd〉Spm〉Put, irrespective of whether or not AMF colonization. PAs significantly changed the RSA traits in mycorrhizal but not in non-mycorrhizal seedlings. It suggests that the application of PAs (especially Spd) to AMF plants would optimize RSA of citrus seedlings, thus increasing plant growth (shoot and root dry weight).展开更多
The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive response...The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat(Triticum aestivum L.). Here, a high-throughput germination paper-based plant phenotyping system was used to identify seedling traits in a wheat doubled haploid mapping population, Savannah×Rialto. Significant genotypic and nitrate-N treatment variation was found across the population for seedling traits with distinct trait grouping for root size-related traits and root distribution-related traits. Quantitative trait locus(QTL) analysis identified a total of 59 seedling trait QTLs. Across two nitrate treatments, 27 root QTLs were specific to the nitrate treatment. Transcriptomic analyses for one of the QTLs on chromosome 2 D, which was found under low nitrate conditions, revealed gene enrichment in N-related biological processes and 28 differentially expressed genes with possible involvement in a root angle response. Together, these findings provide genetic insight into root system architecture and plant adaptive responses to nitrate, as well as targets that could help improve N capture in wheat.展开更多
The architectural parameters of Reaumuria soongorica root system in different habitats of Gansu Province, China were analyzed to examine its ecological adaptability to arid environments. Results show that: (1) Topo...The architectural parameters of Reaumuria soongorica root system in different habitats of Gansu Province, China were analyzed to examine its ecological adaptability to arid environments. Results show that: (1) Topological indices of R. Soongorica root sys- tem are small in all habitats, and root branching pattem tends to be dichotomous. Also, the indices gradually increase in the Min- qin windblown sand region and the Zhangye Gobi region in Hexi Corridor, which indicates that drought tends to produce her- ringbone-like root branching pattems. (2) Fractal dimension values ofR. Soongorica root system are small and not obvious in the Minqin windblown sand region and the Zhangye Gobi region in Hexi Corridor, with values of 1.1778 and 1.1169, respectively. Fractal dimension values are relatively large in Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau, which indicates that the R. Soongorica root system has better fractal characteristics in this region than in the other regions. (3) Total branching ra- tios of the R. Soongorica root system in arid regions of Hexi Corridor are smaller than that in the Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau. This shows that root branching ability in the semi-arid region is stronger, and it decreases to some degree with increased drought. (4) The root connection lengths of R. soongorica root system are long in all habitats, but there are significant length differences between the different habitats. The root connection length at the Minqin windblown sand region is the longest. It is concluded that R. soongoriea adapts to arid environments by decreasing root branching, decreasing root overlap and increasing root connection length, which makes its root branching pattern tend to be herringbone-like to reduce com- petition in root internal environment for nutrients and to enhance root absorption rate of nutrients, and ensure effective nutrition space. Thus the roots can absorb enough water and nutrients in resource-poor settings to ensure normal physiological requirements.展开更多
In the experimental garden of the Department of Soil Bioengineering and Landscape Construction, University of Applied Life Sciences in Vienna, Austria, coarse root systems of three different brush species were complet...In the experimental garden of the Department of Soil Bioengineering and Landscape Construction, University of Applied Life Sciences in Vienna, Austria, coarse root systems of three different brush species were completely excavated and semiutomatically digitized. The species were Lonicera xylosteum, Ligustrum vulgare and Euonymus europaeus. The 3-D root architectures reveal different growth strategies between species, which are related to ecological characteristics and physical soil properties. The root architecture of Lonicera xylosteum and Ligustrum vulgare, planted in the under layer of the live slope grading, where the soil is very tight and the soil water content and fertility are relatively low, is shallow. However, the root distribution of E. europaeus, planted in the middle layer, where environmental conditions are better, is deeper. Most of the root biomass of the three species is concentrated in the 0-30 cm soil layer. A quarter of the root biomass ofLigustrum vulgare is distributed in the upper layer of the plant inlay. E. europaeus has a relatively even distribution in the 30-0 cm and 60-90 cm soil layer.展开更多
Sorghum’s natural adaptation to a wide range of abiotic stresses provides diverse genetic reserves for potential improvement in crop stress tolerance. Growing interest in sorghum research has led to the expansion of ...Sorghum’s natural adaptation to a wide range of abiotic stresses provides diverse genetic reserves for potential improvement in crop stress tolerance. Growing interest in sorghum research has led to the expansion of genetic resources though establishment of the sorghum association panel (SAP), generation of mutagenized populations, and recombinant inbred line (RIL) populations</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> etc. Despite rapid improvement in biotechnological tools, lack of efficient phenotyping platforms remains one of the major obstacles in utilizing these genetic resources. Scarcity of efforts in root system phenotyping hinders identification and integration of the superior root traits advantageous to stress tolerance. Here, we explored multiple approaches in root phenotyping of an ethyl methanesulfonate (EMS)-mutagenized sorghum population. Paper-based growth pouches (PGP) and hydroponics were employed to analyze root system architecture (RSA) variations induced by mutations and to test root development flexibility in response to phosphorus deficiency in early growing stages. PGP method had improved capabilities compared to hydroponics providing inexpensive, space-saving, and high-throughput phenotyping of sorghum roots. Preliminary observation revealed distinct phenotypic variations which were qualitatively and quantitatively systemized for association analysis. Phenotypes/ideotypes with root architecture variations potentially correlated with Pi acquisition were selected to evaluate their contribution to P-efficiency (PE). Sand mixed with P-loaded activated alumina substrate (SAS) provided closely to natural but still controlled single-variable conditions with regulated Pi availability. Due to higher labor and cost input we propose SAS to be used for evaluating selected sorghum candidates for PE. The ability of rapidly screening root phenotypes holds great potential for discovering genes responsible for relevant root traits and utilizing mutations to improve nutrient efficiency and crop productivity.展开更多
Modern industrial systems are usually in large scale,consisting of massive components and variables that form a complex system topology.Owing to the interconnections among devices,a fault may occur and propagate to ex...Modern industrial systems are usually in large scale,consisting of massive components and variables that form a complex system topology.Owing to the interconnections among devices,a fault may occur and propagate to exert widespread influences and lead to a variety of alarms.Obtaining the root causes of alarms is beneficial to the decision supports in making corrective alarm responses.Existing data-driven methods for alarm root cause analysis detect causal relations among alarms mainly based on historical alarm event data.To improve the accuracy,this paper proposes a causal fusion inference method for industrial alarm root cause analysis based on process topology and alarm events.A Granger causality inference method considering process topology is exploited to find out the causal relations among alarms.The topological nodes are used as the inputs of the model,and the alarm causal adjacency matrix between alarm variables is obtained by calculating the likelihood of the topological Hawkes process.The root cause is then obtained from the directed acyclic graph(DAG)among alarm variables.The effectiveness of the proposed method is verified by simulations based on both a numerical example and the Tennessee Eastman process(TEP)model.展开更多
The purpose of this paper is to explore the effects of acid treatment on root morphology and architecture in seedlings of Malus hupehensis var. pingyiensis. The rootstock seedlings were cultured in 1/2 Hoagland nutrie...The purpose of this paper is to explore the effects of acid treatment on root morphology and architecture in seedlings of Malus hupehensis var. pingyiensis. The rootstock seedlings were cultured in 1/2 Hoagland nutrient solutions of different pH (pH 4, pH 4.5, pH 5 and pH 6), respectively. The parameters of root architecture were measured in the day 4, 8 and 12 with the professional WinRHIZO 2007. Compared with the control (pH 6), the treatments significantly decreased the fractal dimension, length, diameter, surface area and volume of roots in day 8 and 12, and they kept decreasing followed the increase of the acidity and treatment time. The growth of lateral roots was more susceptible to acid treatment than taproots. In addition, the acid treatment mainly inhibited the growth of rootlets, significantly decreased the proportion of rootlets that changed the composition of roots, and then simplified the space structure of roots.展开更多
Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of r...Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However,there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass(27.60%), root biomass at 0–10 cm depth(27.84%) and coarse root biomass(diameter > 0.20 mm, 57.68%) in the growing season(August). However, warming had no significant influence on root biomass in the non-growing season(April). Root biomass showed clear seasonalvariations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change.展开更多
It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of...It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency. An experiment was conducted using the upland rice cultivar Zhonghan 3(a japonica cultivar) and paddy rice cultivar Huaidao 5(also a japonica cultivar) using three N levels, namely, 2 g urea/pot(low amount, LN), 3 g urea/pot(normal amount, NN), and 4 g urea/pot(high amount, HN), and three soil water potentials(SWPs, namely, well-watered(0 kPa), mildly dried(–20 kPa) and severely dried(–40 kPa). The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend. With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased. The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer. These results indicate that the combination of-20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield.展开更多
To investigate the influence of root system architectural properties of three indigenous (cold- adapted) shrubs on the hillslope stability of loess deposits in the Xining Basin, northeast part of Qinghai-Tibet Plate...To investigate the influence of root system architectural properties of three indigenous (cold- adapted) shrubs on the hillslope stability of loess deposits in the Xining Basin, northeast part of Qinghai-Tibet Plateau (QTP), indoor direct shear tests have been conducted on the remolded rooted soil of three shrubs. Test results show that root system architectural indices (root area ratio (RAR), root length density (RLD) and root density (RD)) of the shrubs decline with depth and the relationship between RAR, RD and depth is exponential, while a power relationship describes the relationship between RLD and depth. The cohesion force of remolded rooted soil for the shrubs initially increases with depth, but it then demonstrates a slightly decreasing trend, which can be described with a power relationship. Power relationships also describe relationships between cohesion force and RAR, RLD and RD for the shrubs. As the growth period increases from lO to 17 months, the incremental increase in RAR is 48.32% ~ 21o.25% for Caragana korshinskii Kom and 0.56% ~ 166.85% for ZygophyUum xanthoxylon (Bunge) Maxim. This proportional increase is notably larger than that for RLD and RD. The increment in RAR is marginally greater for C. korshinskff than it is for Z. xanthoxylon. Correspondingly, the cohesion force incremental rates of remolded rooted soil for C. korshinskii and Z. xanthoxylon are 12.41% ~ 25.22% and 3.45% ~ 17.33% respectively. Meanwhile, as root content increases, the contribution by roots to cohesion force increases markedly until a threshold condition is reached.展开更多
Water deficit is one of the main limiting factors for apple growth and production.Root architecture plays an important role in drought tolerance of plants.However,little is known about the molecular basis of root syst...Water deficit is one of the main limiting factors for apple growth and production.Root architecture plays an important role in drought tolerance of plants.However,little is known about the molecular basis of root system in apple trees under drought.In this study,we compared root morphology of two widely used rootstocks of apple(R3 and Malus sieversii)under drought.Our results suggested that M.sieversii is more tolerant to drought than R3,since M.sieversii had a higher ratio of root to shoot as well as root hydraulic conductivity under long-term drought conditions.We then performed whole-genome transcriptomic analysis to figure out the molecular basis of root responses in M.sieversii under drought.It was found that genes involved in transcription regulation,signaling or biosynthesis of hormones,and oxidative stress were differentially expressed under drought.Consistent with the gene expression profile,roots of M.sieversii had higher activities of peroxidase(POD)and superoxide dismutase(SOD)under drought,as well as higher content of abscisic acid(ABA)and lower content of auxin.Taken together,our results revealed the physiological and transcriptomic analyses of M.sieversii roots in response to drought.展开更多
Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffectiv...Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffective in large gap injuries. Ridge/groove surface micropatterning has been shown to promote neural cell orientation and guide growth. However, optimization of the ratio of ridge/groove parameters to promote orientation and extension for dorsal root ganglion (DRG) cells on poly(lactic-co-glycolic acid) (PLGA) films has not been previously conducted. Photolithography and micro-molding were used to define various combinations of ridge/groove dimensions on PLGA films. The DRG cells obtained from chicken embryos were cultured on micropatterned PLGA films for cell orientation and migration evaluation.Biodegradation of the films occurred during the test period, however, this did not cause deformation or distortion of the micropatterns. Results from the DRG cell orientation test suggest that when the ridge/groove ratio equals 1 (ridge/groove width parameters are equal, i.e., 10 μm/10 μm (even)), the degree of alignment depends on the size of the ridges and grooves, when the ratio is smaller than 1 (groove controlled) the alignment increases as the ridge size decreases, and when the ratio is larger than 1 (ridge controlled), the alignment is reduced as the width of the grooves decreases. The migration rate and neurite extension of DRG neurons were greatest on 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films. Based on the data, the 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films are the optimized ridge/groove surface patterns for the construction of nerve repair devices.展开更多
Fractal geometry is a potential new approach to analyze the root architecture, which may offer improved ways to quantify and summarize root system complexity as well as yield ecological and physiological insights into...Fractal geometry is a potential new approach to analyze the root architecture, which may offer improved ways to quantify and summarize root system complexity as well as yield ecological and physiological insights into the functional relevance of specific architectural patterns. Fractal analysis is a sensitive measure of root branching intensity and fractal dimension expresses the "space filling" properties of a structure. The objective of this study was to find out the fractal characteristics of root systems in a remote area of the Taklimakan desert in China. The entire root system of two naturally occurring species were excavated and exposed with shov- els in 2007. The species were Tamarix taklamakanensis and Calligonum roborovskii. A one-factorial ANOVA with species as factor showed statistically a highly significant difference in fractal dimensions, indicating differences in their pattern of root branching. There was no relationship between root diameter and two parameters of fractal root models a and q, representing general characteris- tics of root systems, for either species (a: the ratio of the sum of root cross-sectional areas after a branching to the cross-sectional area before root division; q: the distribution of the cross-sectional areas after branching). We have found significant linear relation- ships between the diameter after branching and root length and biomass respectively, because of the self-similarity of root branching. Branching rules are the same for roots of all sizes and lengths. Root biomass for the root systems of entire trees can be estimated by measuring the diameter of each root at the base of the trunk or the diameter after branching. We have shown that the diameter of each root at the base of the trunk and the diameter after branching are effective indices that can be measured easily in order to estimate the root lengths, biomass and other parameters of root architecture.展开更多
[Objective] Iron deficiency is one of the most important crop element deficiencies in the Loess Plateau of northwestern China. The selection for crop cultivars that are tolerant to low iron levels could be one of the ...[Objective] Iron deficiency is one of the most important crop element deficiencies in the Loess Plateau of northwestern China. The selection for crop cultivars that are tolerant to low iron levels could be one of the approaches to solving the problem and improving crop production. [Method] Three major apple root stock species (Malus prunifolia, Malus sieversii and Malus baccata) were selected to evaluate their tolerance to iron defciency in hydroponic system. A 3×2 factorial pot experiment was conducted with three replicates in a greenhouse at Gansu Agricultural University, Lanzhou, China. [Result] The SOD, POD and CAT activities in roots and stems of the 3 root stock species in Fe-defcient Hoagland solution decreased, however Malus sieversii got the less reduction and had better root architecture and growth than the other species. The aboveground biomass, plant height, chlorophyll content, total root length and lateral root number were correlated positively with iron-defciency stress tolerance. The species’ tolerance to iron-defciency from high to low was M. sieversii’s〉M. baccata’s〉M. prunifolia’s. Moreover, the improvement of some morphological features such as root length, above-ground biomass, plant height and lateral root number in apple could be conducive to breeding cultivars with tolerance to iron-defciency stress. [Conclusion] Malus sieversii had better tolerance to iron-defciency stress than the others in this study.展开更多
Until the 1980s, root studies were typically conducted in nutrient solution, because of the technical difficulties of studying roots in their natural environment, soil. Recent innovations and the realization that ther...Until the 1980s, root studies were typically conducted in nutrient solution, because of the technical difficulties of studying roots in their natural environment, soil. Recent innovations and the realization that there are gaps between the expected and actual performance of plant root systems have emphasized the need for more realistic solutions. This review analyzes the study of plant roots in view of developments in soil science, microbiology, botany and plant physiology, and recently the introduction of molecular biology and computerized imaging.展开更多
基金the National Natural Science Foundation of China(31871569 and 32172120)the Natural Science Foundation of Hebei Province,China(C2020204066)。
文摘Drought is an important abiotic stress factor in cotton production.The root system architecture(RSA)of cotton shows high plasticity which can alleviate drought-related stress under drought stress(DS)conditions;however,this alleviation is cultivar dependent.Therefore,this study estimated the genetic variability of RSA in cotton under DS.Using the paper-based growth system,we assessed the RSA variability in 80 cotton cultivars at the seedling stage,with 0 and10%polyethylene glycol 6000(PEG6000)as the control(CK)and DS treatment,respectively.An analysis of 23 aboveground and root traits in the 80 cotton cultivars revealed different responses to DS.On the 10th day after DS treatment,the degree of variation in the RSA traits under DS(5–55%)was greater than that of CK(5–49%).The 80 cultivars were divided into drought-tolerant cultivars(group 1),intermediate drought-tolerant cultivars(group 2),and drought-sensitive cultivars(group 3)based on their comprehensive evaluation values of drought resistance.Under DS,the root lengthlower,root area-lower,root volume-lower,and root length density-lower were significantly reduced by 63,71,76,and 4%in the drought-sensitive cultivars compared to CK.Notably,the drought-tolerant cultivars maintained their root lengthlower,root area-lower,root volume-lower,and root length density–lower attributes.Compared to CK,the root diameter(0–2 mm)-lower increased by 21%in group 1 but decreased by 3 and 64%in groups 2 and 3,respectively,under DS.Additionally,the drought-tolerant cultivars displayed a plastic response under DS that was characterized by an increase in the root-lower characteristics.Drought resistance was positively correlated with the root area-lower and root length density-lower.Overall,the RSA of the different cotton cultivars varied greatly under DS.Therefore,important root traits,such as the root-lower traits,provide great insights for exploring whether drought-tolerant cotton cultivars can effectively withstand adverse environments.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U2006215)the National Natural Science Foundation of China(31770761)+2 种基金the Shandong Key Laboratory of Coastal Environmental Processes,YICCAS(2019SDHADKFJJ16)the Natural Science Foundation of Shangdong Province(ZR2020QD003)Taishan Scholars Program of Shandong Province,China(TSQN201909152)。
文摘To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.
文摘What the researchers go in for is to establish models between root architecture (RA) changes and nutrition, mold ideal root architecture of apple trees, improve the nutrient uptake efficiency, and further explore the functional mechanism of nutrient elements during the course of RA construction. The cultivation system of filter paper is utilized to research the effect of nutrient deficiency on the RA of Malus hupehensis (Pamp.) Rehd. There may be eight types of RA. In complete Hogland solution, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root". With the lack of P, K or Ca, the main type of RA is "lateral roots clustering in the upper region primary root", and the "lateral roots clustering in the upper and middle regions of primary root" types of RA decrease. But with shortage of P, the type of lateral roots clustering in the upper and lower regions of primary root increases, and the type of lateral roots clustering in the middle region of primary root decreases, with the types of RA diversified. Under the condition of K deficiency, the type of no lateral root increases and types of lateral roots clustering in the middle region of primary root decrease, and the percentage of such types as "no lateral root", "lateral roots clustering in the upper region of primary root", and "lateral roots clustering in the upper and middle regions of primary root" accounts for 97.9% in all, with the types of RA simplified. With lack of Fe, Mg or Zn, the main type of RA is "lateral roots clustering in the upper and middle regions of primary root", but the type of lateral roots evenly-distributed on primary root increases. The main type of RA is "lateral roots evenlydistributed on primary root", under the condition of N deficiency, and the types of RA turn out to be diversified. There exists a close relation between nutrient deficiency and RA changes. Owing to various forms of nutrient deficiency, correspondingly different types of RA have been produced.
基金supported by the earmarked fund for the China Agriculture Research System (CARS-27)
文摘Soil alkalinity is a major factor that restricts the growth of apple roots.To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia (alkali-tolerant) and Malus hupehensis (alkali-sensitive), were compared. To understand alkali tolerance of M. prunifolia at the molecular level, transcriptome analysis was performed. When plants were cultured in alkaline conditions for 15 d, the root growth of M. hupehensis with weak alkali tolerance decreased significantly. Analysis of endogenous hormone levels showed that the concentrations of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in M. hupehensis under alkali stress were lower than those in the control. However, the trend for IAA and ZR in M. prunifolia was the opposite. The concentration of abscisic acid (ABA) in the roots of the two apple rootstocks under alkali stress increased, but the concentration of ABA in the roots of M. prunifolia was higher than that in M. hupehensis. The expression of IAA-related genes ARF5, GH3.6, SAUR36, and SAUR32 and the Cytokinin (CTK)-related gene IPT5 in M. prunifolia was higher than those in the control, but the expression of these genes in M. hupehensis was lower than those in the control. The expression of ABA-related genes CIPK1 and AHK1 increased in the two apple rootstocks under alkali stress, but the expression of CIPK1 and AHK1 in M. prunifolia was higher than in M. hupehensis. These results demonstrated that under alkali stress, the increase of IAA, ZR, and ABA in roots and the increase of the expression of related genes promoted the growth of roots and improved the alkali tolerance of apple rootstocks.
基金supported by the National Natural Science Foundation of China (30800747)the Key Project of Ministry of Education of China (211107)the Science-Technology Research Project of Hubei Provincial Department of Education, China (Q20111301)
文摘Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied the interaction between AMF (Paraglomus occultum) and exogenous PAs, including putrescine (Put), spermidine (Spd) and spermine (Spin) on mycorrhizal development of different parts of root system, plant growth, RSA and carbohydrate concentrations of 6-m-old citrus (Citrus tangerine Hort. ex Tanaka) seedlings. After 14 wk of PAs application, PA-treated mycorrhizal seedlings exhibited better mycorrhizal colonization and numbers of vesicles, arbuscules, and entry points, and the best mycorrhizal status of taproot, first-, second-, and third-order lateral roots was respectively found in mycorrhizal seedlings supplied with Put, Spd and Spm, suggesting that PAs might act as a regulated factor of mycorrhizal development through transformation of root sucrose more into glucose for sustaining mycorrhizal development. AMF usually notably increases RSA traits (taproot length, total length, average diameter, projected area, surface area, volume, and number of first-, second-, and third-order lateral roots) of only PA-treated seedlings. Among the three PA species, greater positive effects on RSA change and plant biomass increment of the seedlings generally rank as Spd〉Spm〉Put, irrespective of whether or not AMF colonization. PAs significantly changed the RSA traits in mycorrhizal but not in non-mycorrhizal seedlings. It suggests that the application of PAs (especially Spd) to AMF plants would optimize RSA of citrus seedlings, thus increasing plant growth (shoot and root dry weight).
基金supported by the Biotechnology and Biological Sciences Research Council,UK(BB/M001806/1,BB/L026848/1,BB/P026834/1,and BB/M019837/1)(MJB,DMW,and MPP)the Leverhulme Trust,UK(RPG-2016–409)(MJB and DMW)+1 种基金the European Research Council FUTUREROOTS Advanced Investigator Grant,UK(294729)to MG,JAA,DMW,and MJBthe University of Nottingham Future Food Beacon of Excellence,UK。
文摘The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat(Triticum aestivum L.). Here, a high-throughput germination paper-based plant phenotyping system was used to identify seedling traits in a wheat doubled haploid mapping population, Savannah×Rialto. Significant genotypic and nitrate-N treatment variation was found across the population for seedling traits with distinct trait grouping for root size-related traits and root distribution-related traits. Quantitative trait locus(QTL) analysis identified a total of 59 seedling trait QTLs. Across two nitrate treatments, 27 root QTLs were specific to the nitrate treatment. Transcriptomic analyses for one of the QTLs on chromosome 2 D, which was found under low nitrate conditions, revealed gene enrichment in N-related biological processes and 28 differentially expressed genes with possible involvement in a root angle response. Together, these findings provide genetic insight into root system architecture and plant adaptive responses to nitrate, as well as targets that could help improve N capture in wheat.
基金funded by the National Natural Science Foundation of China(4136110031360205)+1 种基金International Science and Technology Cooperation Program of China(2012DFR30830)the Gansu Science and Technology Support Program(1204NKCA084)
文摘The architectural parameters of Reaumuria soongorica root system in different habitats of Gansu Province, China were analyzed to examine its ecological adaptability to arid environments. Results show that: (1) Topological indices of R. Soongorica root sys- tem are small in all habitats, and root branching pattem tends to be dichotomous. Also, the indices gradually increase in the Min- qin windblown sand region and the Zhangye Gobi region in Hexi Corridor, which indicates that drought tends to produce her- ringbone-like root branching pattems. (2) Fractal dimension values ofR. Soongorica root system are small and not obvious in the Minqin windblown sand region and the Zhangye Gobi region in Hexi Corridor, with values of 1.1778 and 1.1169, respectively. Fractal dimension values are relatively large in Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau, which indicates that the R. Soongorica root system has better fractal characteristics in this region than in the other regions. (3) Total branching ra- tios of the R. Soongorica root system in arid regions of Hexi Corridor are smaller than that in the Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau. This shows that root branching ability in the semi-arid region is stronger, and it decreases to some degree with increased drought. (4) The root connection lengths of R. soongorica root system are long in all habitats, but there are significant length differences between the different habitats. The root connection length at the Minqin windblown sand region is the longest. It is concluded that R. soongoriea adapts to arid environments by decreasing root branching, decreasing root overlap and increasing root connection length, which makes its root branching pattern tend to be herringbone-like to reduce com- petition in root internal environment for nutrients and to enhance root absorption rate of nutrients, and ensure effective nutrition space. Thus the roots can absorb enough water and nutrients in resource-poor settings to ensure normal physiological requirements.
文摘In the experimental garden of the Department of Soil Bioengineering and Landscape Construction, University of Applied Life Sciences in Vienna, Austria, coarse root systems of three different brush species were completely excavated and semiutomatically digitized. The species were Lonicera xylosteum, Ligustrum vulgare and Euonymus europaeus. The 3-D root architectures reveal different growth strategies between species, which are related to ecological characteristics and physical soil properties. The root architecture of Lonicera xylosteum and Ligustrum vulgare, planted in the under layer of the live slope grading, where the soil is very tight and the soil water content and fertility are relatively low, is shallow. However, the root distribution of E. europaeus, planted in the middle layer, where environmental conditions are better, is deeper. Most of the root biomass of the three species is concentrated in the 0-30 cm soil layer. A quarter of the root biomass ofLigustrum vulgare is distributed in the upper layer of the plant inlay. E. europaeus has a relatively even distribution in the 30-0 cm and 60-90 cm soil layer.
文摘Sorghum’s natural adaptation to a wide range of abiotic stresses provides diverse genetic reserves for potential improvement in crop stress tolerance. Growing interest in sorghum research has led to the expansion of genetic resources though establishment of the sorghum association panel (SAP), generation of mutagenized populations, and recombinant inbred line (RIL) populations</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> etc. Despite rapid improvement in biotechnological tools, lack of efficient phenotyping platforms remains one of the major obstacles in utilizing these genetic resources. Scarcity of efforts in root system phenotyping hinders identification and integration of the superior root traits advantageous to stress tolerance. Here, we explored multiple approaches in root phenotyping of an ethyl methanesulfonate (EMS)-mutagenized sorghum population. Paper-based growth pouches (PGP) and hydroponics were employed to analyze root system architecture (RSA) variations induced by mutations and to test root development flexibility in response to phosphorus deficiency in early growing stages. PGP method had improved capabilities compared to hydroponics providing inexpensive, space-saving, and high-throughput phenotyping of sorghum roots. Preliminary observation revealed distinct phenotypic variations which were qualitatively and quantitatively systemized for association analysis. Phenotypes/ideotypes with root architecture variations potentially correlated with Pi acquisition were selected to evaluate their contribution to P-efficiency (PE). Sand mixed with P-loaded activated alumina substrate (SAS) provided closely to natural but still controlled single-variable conditions with regulated Pi availability. Due to higher labor and cost input we propose SAS to be used for evaluating selected sorghum candidates for PE. The ability of rapidly screening root phenotypes holds great potential for discovering genes responsible for relevant root traits and utilizing mutations to improve nutrient efficiency and crop productivity.
基金supported by the National Natural Science Foundation of China(Nos.61903345 and 61973287)。
文摘Modern industrial systems are usually in large scale,consisting of massive components and variables that form a complex system topology.Owing to the interconnections among devices,a fault may occur and propagate to exert widespread influences and lead to a variety of alarms.Obtaining the root causes of alarms is beneficial to the decision supports in making corrective alarm responses.Existing data-driven methods for alarm root cause analysis detect causal relations among alarms mainly based on historical alarm event data.To improve the accuracy,this paper proposes a causal fusion inference method for industrial alarm root cause analysis based on process topology and alarm events.A Granger causality inference method considering process topology is exploited to find out the causal relations among alarms.The topological nodes are used as the inputs of the model,and the alarm causal adjacency matrix between alarm variables is obtained by calculating the likelihood of the topological Hawkes process.The root cause is then obtained from the directed acyclic graph(DAG)among alarm variables.The effectiveness of the proposed method is verified by simulations based on both a numerical example and the Tennessee Eastman process(TEP)model.
文摘The purpose of this paper is to explore the effects of acid treatment on root morphology and architecture in seedlings of Malus hupehensis var. pingyiensis. The rootstock seedlings were cultured in 1/2 Hoagland nutrient solutions of different pH (pH 4, pH 4.5, pH 5 and pH 6), respectively. The parameters of root architecture were measured in the day 4, 8 and 12 with the professional WinRHIZO 2007. Compared with the control (pH 6), the treatments significantly decreased the fractal dimension, length, diameter, surface area and volume of roots in day 8 and 12, and they kept decreasing followed the increase of the acidity and treatment time. The growth of lateral roots was more susceptible to acid treatment than taproots. In addition, the acid treatment mainly inhibited the growth of rootlets, significantly decreased the proportion of rootlets that changed the composition of roots, and then simplified the space structure of roots.
基金supported by the National Natural Science Foundation of China (41571205)the Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences (Grant No. XDB03030505, XDA05050506)
文摘Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However,there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass(27.60%), root biomass at 0–10 cm depth(27.84%) and coarse root biomass(diameter > 0.20 mm, 57.68%) in the growing season(August). However, warming had no significant influence on root biomass in the non-growing season(April). Root biomass showed clear seasonalvariations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change.
基金the National Natural Science Foundation of China(31671617)the National Key Research and Development Program of China(2016YFD0300502,2016YFD0300206 and 2018YFD0301306)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency. An experiment was conducted using the upland rice cultivar Zhonghan 3(a japonica cultivar) and paddy rice cultivar Huaidao 5(also a japonica cultivar) using three N levels, namely, 2 g urea/pot(low amount, LN), 3 g urea/pot(normal amount, NN), and 4 g urea/pot(high amount, HN), and three soil water potentials(SWPs, namely, well-watered(0 kPa), mildly dried(–20 kPa) and severely dried(–40 kPa). The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend. With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased. The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer. These results indicate that the combination of-20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41162010,41572306)provincial key project in science and technologies of Qinghai(Grant No.2003-N-134)+1 种基金Excellent Talents in University of New Century by Ministry of Education of the People’s Republic of China(Grant No.NCET–04–G983)International Science&Technology Cooperation Program of China(Grant No.2011DFG93160)
文摘To investigate the influence of root system architectural properties of three indigenous (cold- adapted) shrubs on the hillslope stability of loess deposits in the Xining Basin, northeast part of Qinghai-Tibet Plateau (QTP), indoor direct shear tests have been conducted on the remolded rooted soil of three shrubs. Test results show that root system architectural indices (root area ratio (RAR), root length density (RLD) and root density (RD)) of the shrubs decline with depth and the relationship between RAR, RD and depth is exponential, while a power relationship describes the relationship between RLD and depth. The cohesion force of remolded rooted soil for the shrubs initially increases with depth, but it then demonstrates a slightly decreasing trend, which can be described with a power relationship. Power relationships also describe relationships between cohesion force and RAR, RLD and RD for the shrubs. As the growth period increases from lO to 17 months, the incremental increase in RAR is 48.32% ~ 21o.25% for Caragana korshinskii Kom and 0.56% ~ 166.85% for ZygophyUum xanthoxylon (Bunge) Maxim. This proportional increase is notably larger than that for RLD and RD. The increment in RAR is marginally greater for C. korshinskff than it is for Z. xanthoxylon. Correspondingly, the cohesion force incremental rates of remolded rooted soil for C. korshinskii and Z. xanthoxylon are 12.41% ~ 25.22% and 3.45% ~ 17.33% respectively. Meanwhile, as root content increases, the contribution by roots to cohesion force increases markedly until a threshold condition is reached.
基金supported by the National Natural Science Foundation of China (31622049 and 31572106)the Key Program of the National Natural Science Foundation of China (31330068)+1 种基金the Program of Sci-Tech Star of Shaanxi, China (2015kjxx14)the startup funding (Z111021402) from Northwest A&F University to Guan Qingmei who is also supported by the Thousand Talents Plan of China
文摘Water deficit is one of the main limiting factors for apple growth and production.Root architecture plays an important role in drought tolerance of plants.However,little is known about the molecular basis of root system in apple trees under drought.In this study,we compared root morphology of two widely used rootstocks of apple(R3 and Malus sieversii)under drought.Our results suggested that M.sieversii is more tolerant to drought than R3,since M.sieversii had a higher ratio of root to shoot as well as root hydraulic conductivity under long-term drought conditions.We then performed whole-genome transcriptomic analysis to figure out the molecular basis of root responses in M.sieversii under drought.It was found that genes involved in transcription regulation,signaling or biosynthesis of hormones,and oxidative stress were differentially expressed under drought.Consistent with the gene expression profile,roots of M.sieversii had higher activities of peroxidase(POD)and superoxide dismutase(SOD)under drought,as well as higher content of abscisic acid(ABA)and lower content of auxin.Taken together,our results revealed the physiological and transcriptomic analyses of M.sieversii roots in response to drought.
文摘Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffective in large gap injuries. Ridge/groove surface micropatterning has been shown to promote neural cell orientation and guide growth. However, optimization of the ratio of ridge/groove parameters to promote orientation and extension for dorsal root ganglion (DRG) cells on poly(lactic-co-glycolic acid) (PLGA) films has not been previously conducted. Photolithography and micro-molding were used to define various combinations of ridge/groove dimensions on PLGA films. The DRG cells obtained from chicken embryos were cultured on micropatterned PLGA films for cell orientation and migration evaluation.Biodegradation of the films occurred during the test period, however, this did not cause deformation or distortion of the micropatterns. Results from the DRG cell orientation test suggest that when the ridge/groove ratio equals 1 (ridge/groove width parameters are equal, i.e., 10 μm/10 μm (even)), the degree of alignment depends on the size of the ridges and grooves, when the ratio is smaller than 1 (groove controlled) the alignment increases as the ridge size decreases, and when the ratio is larger than 1 (ridge controlled), the alignment is reduced as the width of the grooves decreases. The migration rate and neurite extension of DRG neurons were greatest on 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films. Based on the data, the 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films are the optimized ridge/groove surface patterns for the construction of nerve repair devices.
文摘Fractal geometry is a potential new approach to analyze the root architecture, which may offer improved ways to quantify and summarize root system complexity as well as yield ecological and physiological insights into the functional relevance of specific architectural patterns. Fractal analysis is a sensitive measure of root branching intensity and fractal dimension expresses the "space filling" properties of a structure. The objective of this study was to find out the fractal characteristics of root systems in a remote area of the Taklimakan desert in China. The entire root system of two naturally occurring species were excavated and exposed with shov- els in 2007. The species were Tamarix taklamakanensis and Calligonum roborovskii. A one-factorial ANOVA with species as factor showed statistically a highly significant difference in fractal dimensions, indicating differences in their pattern of root branching. There was no relationship between root diameter and two parameters of fractal root models a and q, representing general characteris- tics of root systems, for either species (a: the ratio of the sum of root cross-sectional areas after a branching to the cross-sectional area before root division; q: the distribution of the cross-sectional areas after branching). We have found significant linear relation- ships between the diameter after branching and root length and biomass respectively, because of the self-similarity of root branching. Branching rules are the same for roots of all sizes and lengths. Root biomass for the root systems of entire trees can be estimated by measuring the diameter of each root at the base of the trunk or the diameter after branching. We have shown that the diameter of each root at the base of the trunk and the diameter after branching are effective indices that can be measured easily in order to estimate the root lengths, biomass and other parameters of root architecture.
基金Supported by University Research Project of Education Dpartment(2018A-035)~~
文摘[Objective] Iron deficiency is one of the most important crop element deficiencies in the Loess Plateau of northwestern China. The selection for crop cultivars that are tolerant to low iron levels could be one of the approaches to solving the problem and improving crop production. [Method] Three major apple root stock species (Malus prunifolia, Malus sieversii and Malus baccata) were selected to evaluate their tolerance to iron defciency in hydroponic system. A 3×2 factorial pot experiment was conducted with three replicates in a greenhouse at Gansu Agricultural University, Lanzhou, China. [Result] The SOD, POD and CAT activities in roots and stems of the 3 root stock species in Fe-defcient Hoagland solution decreased, however Malus sieversii got the less reduction and had better root architecture and growth than the other species. The aboveground biomass, plant height, chlorophyll content, total root length and lateral root number were correlated positively with iron-defciency stress tolerance. The species’ tolerance to iron-defciency from high to low was M. sieversii’s〉M. baccata’s〉M. prunifolia’s. Moreover, the improvement of some morphological features such as root length, above-ground biomass, plant height and lateral root number in apple could be conducive to breeding cultivars with tolerance to iron-defciency stress. [Conclusion] Malus sieversii had better tolerance to iron-defciency stress than the others in this study.
文摘Until the 1980s, root studies were typically conducted in nutrient solution, because of the technical difficulties of studying roots in their natural environment, soil. Recent innovations and the realization that there are gaps between the expected and actual performance of plant root systems have emphasized the need for more realistic solutions. This review analyzes the study of plant roots in view of developments in soil science, microbiology, botany and plant physiology, and recently the introduction of molecular biology and computerized imaging.