Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. Th...Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard K factors model and then uses the Ion motion optimization (IMO) algorithm to set up a propagation model adapted to the physical environment of each of the Cameroonian cities of Yaoundé and Bertoua for different frequencies and technologies. Drive tests were made on the CDMA network in the city of Yaoundé on one hand and on an LTE TDD network in the city of Bertoua on the other hand. IMO is used as the optimization algorithm to deduct a propagation model which fits the environment of the two considered towns. The calculation of the root-mean-square error (RMSE) between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura-Hata and K factors standard models, allowed us to conclude that the new model obtained in each of these two cities is better and more representative of our local environment than the Okumura-Hata currently implemented. The implementation shows that IMO can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the cities of Yaounde and Bertoua in Cameroon.展开更多
Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially ...Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.展开更多
电波传播特性预测是无线电系统设计的基础,其中路径损耗特性关系到系统覆盖范围,决定系统布局,时延特性决定数字通信系统的最大数据传输速率.提出一种预测矩形隧道中电波传播特性的方法,该方法可以通过几何光学原理精确地计算出由发射...电波传播特性预测是无线电系统设计的基础,其中路径损耗特性关系到系统覆盖范围,决定系统布局,时延特性决定数字通信系统的最大数据传输速率.提出一种预测矩形隧道中电波传播特性的方法,该方法可以通过几何光学原理精确地计算出由发射天线到达接收天线的电波主要路径,避免了复杂度很高的射线跟踪过程,使传统预测方法的计算复杂度大大降低.仿真结果表明:该模型对电波传播的路径损耗预测精度不低于传统的射线跟踪方法;隧道环境中收发天线相距越近,其接收的多径信号的平均时延扩散与均方根(root mean square,RMS)时延扩散越大;隧道截面积越大,其接收的多径信号的平均时延扩散与RMS时延扩散越大.展开更多
可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多...可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。展开更多
文摘Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard K factors model and then uses the Ion motion optimization (IMO) algorithm to set up a propagation model adapted to the physical environment of each of the Cameroonian cities of Yaoundé and Bertoua for different frequencies and technologies. Drive tests were made on the CDMA network in the city of Yaoundé on one hand and on an LTE TDD network in the city of Bertoua on the other hand. IMO is used as the optimization algorithm to deduct a propagation model which fits the environment of the two considered towns. The calculation of the root-mean-square error (RMSE) between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura-Hata and K factors standard models, allowed us to conclude that the new model obtained in each of these two cities is better and more representative of our local environment than the Okumura-Hata currently implemented. The implementation shows that IMO can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the cities of Yaounde and Bertoua in Cameroon.
文摘Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.
文摘电波传播特性预测是无线电系统设计的基础,其中路径损耗特性关系到系统覆盖范围,决定系统布局,时延特性决定数字通信系统的最大数据传输速率.提出一种预测矩形隧道中电波传播特性的方法,该方法可以通过几何光学原理精确地计算出由发射天线到达接收天线的电波主要路径,避免了复杂度很高的射线跟踪过程,使传统预测方法的计算复杂度大大降低.仿真结果表明:该模型对电波传播的路径损耗预测精度不低于传统的射线跟踪方法;隧道环境中收发天线相距越近,其接收的多径信号的平均时延扩散与均方根(root mean square,RMS)时延扩散越大;隧道截面积越大,其接收的多径信号的平均时延扩散与RMS时延扩散越大.
文摘可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。