In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman f...针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。展开更多
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.
文摘针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。