期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Anatomical Structure of Root and Root Nodule of Alnus sibirica-Host o fBoschniakia rosica
1
作者 Hu Baozhong, Li Jing, Gui Mingzhu, Li Guiqin and Xu Lijun (Northeast Agricultural University, Harbin 150030, PRC) 《Journal of Northeast Agricultural University(English Edition)》 CAS 1997年第1期60-64,共5页
The root of Alnus sibirica is rich in tissue type. Phloem fibers are obvious and Plasmodesmas are well developed. The number of primary xylem bunches are not stable, there are triarch, tetrarch and pentarch types. Th... The root of Alnus sibirica is rich in tissue type. Phloem fibers are obvious and Plasmodesmas are well developed. The number of primary xylem bunches are not stable, there are triarch, tetrarch and pentarch types. The perforation plate of vessel is scalariform. The rays types are radial in shape and unicellular in structure. In root nodule, cortex is the best developed structure, the stele is small. The root nodule is branched. In root nodule tissues, actinomyces proliferate luxuriently, the actinomyces body is in different shapes. 展开更多
关键词 Alnus sibirica root root nodule ANATOMICAL STRUCTURE
全文增补中
Effect of Inoculation with Arbuscular Mycorrhizal Fungus on Nitrogen and Phosphorus Utilization in Upland Rice-Mungbean Intercropping System 被引量:11
2
作者 XIAO Tong-jian YANG Qing-song RAN Wei XU Guo-hua SHEN Qi-rong 《Agricultural Sciences in China》 CAS CSCD 2010年第4期528-535,共8页
The effect of arbuscular mycorrhiza fungi (AMF) on plant growth and nutrition utilization in upland rice and mungbean intercropping system was studied. A pot experiment was conducted in the greenhouse and AMF coloni... The effect of arbuscular mycorrhiza fungi (AMF) on plant growth and nutrition utilization in upland rice and mungbean intercropping system was studied. A pot experiment was conducted in the greenhouse and AMF colonization rates of rice and mungbean roots, plant nutrient contents, the ability of nitrogen fixation, and nutrient contents changed in the soil were analyzed. The results were obtained as follows: the rates of AMF colonization of rice and mungbean roots were reached to 14.47 and 92.2% in intercopping system, and increased by 4.11 and 11.95% compared with that of in monocropping; the nirtrogen contents of mungbean and rice were increased by 83.72 and 64.83% in shoots, and 53.76 and 41.29% in roots, respectively, while the contents of iron in shoot and root of mungbean were increased by 223.08 and 60.19%, respectively. In the intercropping system with inoculation of AMF, the biomass of mungbean increased by 288.8%. However, the biomass of rice was not significantly changed among all treatments with or without inoculation of AMF recorded. The number and dry weight of nodules were significantly increased either when mungbean was intercropped with rice or inoculated with AMF. When compared with that of monocropping without AMF inoculation, the contents of nitrogen, phosphorus and iron in nodules of intercropping mungbean with inoculation increased by 80.14, 69.54 and 39.62%, respectively. Additionally, intercropping with AMF inoculation significantly increased soil nitrogen content, but reduced soil phosphorus content. We concluded that upland rice-mungbean intercropping system and inoculation with AMF improved the nutrient uptake, the ability of nitrogen fixation and the growth of mungbean. 展开更多
关键词 MUNGBEAN rice arbuscular mycorrhizal fungi (AMF) INTERCROPPING NITROGEN PHOSPHORUS iron root nodule
下载PDF
Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope^15N 被引量:29
3
作者 WANG Cai-bin ZHENG Yong-mei +5 位作者 SHEN Pu ZHENG Ya-ping WU Zheng-feng SUN Xue-wu YU Tian-yi FENG Hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期432-439,共8页
Rational application of different forms of nitrogen(N) fertilizer for peanut(Arachis hypogaea L.) requires tracking the N supplied sources which are commonly not available in the differences among the three source... Rational application of different forms of nitrogen(N) fertilizer for peanut(Arachis hypogaea L.) requires tracking the N supplied sources which are commonly not available in the differences among the three sources:root nodule,soil and fertilizer.In this study,two kinds of peanut plants(nodulated variety(Huayu 22) and non-nodulated variety(NN-1)) were choosed and four kinds of N fertilizers:urea-N(CONH_2-N),ammonium-N(NH_4~+-N),nitrate-N(NO_3^--N) and NH_4~+ +NO_3^--N labeled by^(15)N isotope were applied in the field barrel experiment in Chengyang Experimental Station,Shandong Province,China,to determine the N supplied sources and N use efficiency over peanut growing stages.The results showed that intensities and amounts of N supply from the three sources were all higher at middle growing stages(pegging phase and podding phase).The accumulated amounts of N supply from root nodule,soil and fertilizer over the growing stages were 8.3,5.3 and 3.8g m^(-2) in CONH_2-N treatment,which are all significantly higher than in the other three treatments.At seedling phase,soil supplied the most N for peanut growth,then root nodule controlled the N supply at pegging phase and podding phase,but soil mainly provided N again at the last stage(pod filling phase).For the whole growing stages,root nodule supplied the most N(47.8 and 43.0%) in CONH_2-N and NH_4~+-N treatments,whereas soil supplied the most N(41.7 and 40.9%) in NH_4~+ +NO_3^--N and NO_3^--N treatments.The N use efficiency was higher at pegging phase and podding phase,while accumulated N use efficiency over the growing stages was higher in CONH_2-N treatment(42.2%) than in other three treatments(30.4%in NH_4~+-N treatment,29.4%in NO_3^--N treatment,29.4%in NH_4~+ +NO_3^--N treatment).In peanut growing field,application of CONH_2-N is a better way to increase the supply of N from root nodule and improve the N use efficiency. 展开更多
关键词 urea-N growing stage N fixation N use efficiency root nodule
下载PDF
Enhanced adaptability of Sesbania rostrata to Pb/Zn tailings via stem nodulation 被引量:1
4
作者 JIAN Shuguang SHEN Weijun YANG Zhongyi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第8期1135-1141,共7页
Sesbania rostrata is wellknown for its stem nodulation, but the roles of stem nodulation in root nodulation and adaptation of S. rostrata to Pb/Zn-enriched tailings environment has been poorly understood. We investiga... Sesbania rostrata is wellknown for its stem nodulation, but the roles of stem nodulation in root nodulation and adaptation of S. rostrata to Pb/Zn-enriched tailings environment has been poorly understood. We investigated the effects of inoculating (with stem nodule treatment) and non-inoculating (without stem nodule treatment) Azorhizobium caulinodans on the growth, root nodulation, and N fixation of S. rostrata grown on three different types of soil substrata: Pb/Zn tailings, garden soil amended tailings, and garden soil. The results showed that plant height, stem basal diameter, biomass, chlorophyll content, nitrogen content and N-accumulation per plant were 2.3%-4.9%, 2.2%-7.7%, 27.8%-72.2%, 17.1%-23.5%, 12.3%-34.2%, and 43.1%-131.2%, respectively, higher in treatments with stem nodule than those without stem nodule for the same soil substrate. With respect to soil substrata, all measurements had consistently higher values in tailings than in amended tailings and garden soil, indicating that the poorer the soil condition, the greater the contribution of stem nodule. In contrast, the number and fresh weight of root nodules on plants without stem nodule were 6.9-11.6 times and 5.8-29.0 times higher than those with stem nodule, respectively, especially with respect to the plants grew on Pb/Zn tailings. In general, stem nodulation favored plant growth and nitrogen fixation of S. rostrata, but suppressed root nodulation. With the ability of stem and root nodulation, S. rostrata can be used as a pioneer plant species for remediation of Pb/Zn tailings. 展开更多
关键词 Sesbania rostrata stem nodulation root nodulation Pb/Zn tailings remediation
下载PDF
Phosphorus and Nitrogen Interactions in Field-Grown Soybean as Related to Genetic Attributes of Root Morphological and Nodular Traits 被引量:7
5
作者 Rui-BinKUANG HongLIAO +1 位作者 Xiao-LongYAN Ying-ShanDONG 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第5期549-559,共11页
Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological... Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological and nodular traits. In experiment one, 13 cultivated soybean varieties were grown in a field with relatively low soil P and N availability. P application with 160 kg P/hm2 as triple superphosphate produced a significant simultaneous increase in the content of both P and N in shoot, demonstrating positive P and N interactions. The addition of P also increased root dry weight, root nodule number, nodule mass, nodule size, and nodulation index, but decreased root length and root surface area, indicating that P may affect N nutrition in soybean through a number of root morphological and nodular traits. Interestingly, like P content, N content appeared to be more correlated with root morphological traits (root weight, root length, and root surface area) than with root nodular traits (nodule number, nodule size, nodule mass, and nodulation index) at both P levels, implying that N taken up by the roots may contribute more to the plant N status than biological N2 fixation under the present experimental conditions. In experiment two, 57 soybean lines of a recombinant inbred line (RIL) population derived from a cross between a cultivated variety and a wild genotype were grown on another field site with moderately sufficient P and N levels to further characterize the genetic attributes of root morphological and nodular traits and their relationships with P and N interactions. The results indicated that all morphological and nodular traits measured continually segregated in the RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Genetic analysis revealed that all these root traits had relatively low heritabilities (h2b=74.12,70.65,73.76,56.34,52.59, and 52.24 for root weight, root length, root surface area, nodule number, nodule mass, and nodule size, respectively), suggesting that root morphology and nodule formation are influenced greatly by environmental factors. Correlation analysis of the RILs showed that shoot N content was significantly correlated with P content, confirming positive PXN interactions. Similar to experiment one, shoot N content was only significantly correlated with root morphological traits, but not with root nodular traits, again denoting the fact that the N status in soybean could be attributed more to N uptake from the soil than to biological N2 fixation under the present experimental conditions. 展开更多
关键词 nitrogen (N) phosphorus (P) recombinant inbred lines (RILs) root morphology root nodule soybean (Glycine max L.)
原文传递
A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis
6
作者 Baolan Fu Zhipeng Xu +6 位作者 Yutao Lei Ru Dong Yanan Wang Xiaoli Guo Hui Zhu Yangrong Cao Zhe Yan 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第5期1297-1311,共15页
Nodulation Receptor Kinase(NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain t... Nodulation Receptor Kinase(NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain to be fully identified.Here, we identified a GmNORK-Interacting Small Protein(GmNISP1) that functions as a phosphorylation target of GmNORK to promote soybean nodulation. GmNORKα directly interacted with and phosphorylated GmNISP1. Transcription of GmNISP1 was strongly induced after rhizobial infection in soybean roots and nodules. GmNISP1 encodes a peptide containing 90 amino acids with a “DY” consensus motif at its N-terminus.GmNISP1 protein was detected to be present in the apoplastic space. Phosphorylation of GmNISP1 by GmNORKα could enhance its secretion into the apoplast. Pretreatment with either purified GmNISP1 or phosphorylation-mimic GmNISP1~(12D) on the roots could significantly increase nodule numbers compared with the treatment with phosphorylation-inactive GmNISP1~(12A).The data suggested a model that soybean GmNORK phosphorylates GmNISP1 to promote its secretion into the apoplast, which might function as a potential peptide hormone to promote root nodulation. 展开更多
关键词 legume-rhizobia symbiosis Nodulation Receptor Kinase protein phosphorylation root nodule symbiosis SOYBEAN
原文传递
Mechanisms underlying legume-rhizobium symbioses 被引量:6
7
作者 Jun Yang Liying Lan +3 位作者 Yue Jin Nan Yu Dong Wang Ertao Wang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第2期244-267,共24页
Legumes,unlike most land plants,can form symbiotic root nodules with nitrogen-fixing bacteria to secure nitrogen for growth.The formation of nitrogen-fixing nodules on legume roots requires the coordination of rhizobi... Legumes,unlike most land plants,can form symbiotic root nodules with nitrogen-fixing bacteria to secure nitrogen for growth.The formation of nitrogen-fixing nodules on legume roots requires the coordination of rhizobial infection at the root epidermis with cell division in the cortex.The nodules house the nitrogen-fixing rhizobia in organelle-like structures known as symbiosomes,which enable nitrogen fixation and facilitate the exchange of metabolites between the host and symbionts.In addition to this beneficial interaction,legumes are continuously exposed to would-be pathogenic microbes;therefore the ability to discriminate pathogens from symbionts is a major determinant of plant survival under natural conditions.Here,we summarize recent advances in the understanding of root nodule symbiosis signaling,transcriptional regulation,and regulation of plant immunity during legume-rhizobium symbiosis.In addition,we propose several important questions to be addressed and provide insights into the potential for engineering the capacity to fix nitrogen in legume and nonlegume plants. 展开更多
关键词 nodule organogenesis plant immunity root nodule symbiosis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部