期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Evolution history dominantly regulates fine root lifespan in tree species across the world
1
作者 Xingzhao Huang Zhouying Lu +6 位作者 Fangbing Li Yang Deng Fangfang Wan Quancheng Wang Fousseni Folega Jinsong Wang Zijian Guo 《Forest Ecosystems》 SCIE CSCD 2024年第4期516-525,共10页
Understanding the drivers of variations in fine root lifespan is key to informing nutrient cycling and productivity in terrestrial ecosystems.However,the general patterns and determinants of forest fine root lifespan ... Understanding the drivers of variations in fine root lifespan is key to informing nutrient cycling and productivity in terrestrial ecosystems.However,the general patterns and determinants of forest fine root lifespan at the global scale are still limited.We compiled a dataset of 421 fine root lifespan observations from 76 tree species globally to assess phylogenetic signals among species,explored relationships between fine root lifespan and biotic and abiotic factors,and quantified the relative importance of phylogeny,root system structure and functions,climatic and edaphic factors in driving global fine root lifespan variations.Overall,fine root lifespan showed a clear phylogenetic signal,with gymnosperms having a longer fine root lifespan than angiosperms.Fine root lifespan was longer for evergreens than deciduous trees.Ectomycorrhizal(ECM)plants had an extended fine root lifespan than arbuscular mycorrhizal(AM)plants.Among different climatic zones,fine root lifespan was the longest in the boreal zone,while it did not vary between the temperate and tropical zone.Fine root lifespan increased with soil depth and root order.Furthermore,the analysis of relative importance indicated that phylogeny was the strongest driver influencing the variation in forest fine root lifespan,followed by soil clay content,root order,mean annual temperature,and soil depth,while other environmental factors and root traits exerted weaker effects.Our results suggest that the global pattern of fine root lifespan in forests is shaped by the interplay of phylogeny,root traits and environmental factors.These findings necessitate accurate representations of tree evolutionary history in earth system models to predict fine root longevity and its responses to global changes. 展开更多
关键词 Fine root lifespan Trees PHYLOGENY root order Soil property Climatic factors
下载PDF
Definition of fine roots on the basis of the root anatomy, diameter,and branch orders of one-year old Fraxinus mandshurica seedlings 被引量:3
2
作者 Xinzhu Du Xing Wei 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1321-1327,共7页
Fine roots are important in root absorption of nutrient and water,and in root turnover.Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest... Fine roots are important in root absorption of nutrient and water,and in root turnover.Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest ecosystems.Root development and physiological functions are reflections of root anatomical structure.In this study,the anatomical structures of different root orders were analyzed by examining paraffin sections of one-year old Fraxinus mandshurica seedlings.One-year-old F.mandshurica seedlings had over five root orders.The root anatomical structures of all orders showed more differences.First and second order roots consisted of four sections: the epidermis,cortex,pericycle,and vascular bundles.Fourth and fifth order roots were mainly composed of the skin and peripheral vascular bundles(including the xylem and phloem).Third order roots had root epidermal and cortical structures,but the quantity and integrity of the cortical cells were inferior to those of the first and second order roots,and superior to those of the fourth and fifth order roots.All the first and second order roots and some third order roots with discontinuous cork layer(〈0.4 mm in diameter),but not the fourth and fifth order roots,were the fine roots of one-year old F.mandshurica seedlings.Although they had similar diameters,different portions of root systems had different anatomical structures and therefore,vary in capacity to absorb water and nutrients.Fine roots were accurately defined by root diameter,branch orders,and anatomical structural features of one-year old F.mandshurica seedlings. 展开更多
关键词 Fine root root order Fraxinus mandshurica Anatomical structure
下载PDF
Root phosphatase activity is a competitive trait affiliated with the conservation gradient in root economic space 被引量:1
3
作者 Boyuan Bi Qiulong Yin Zhanqing Hao 《Forest Ecosystems》 SCIE CSCD 2023年第2期279-286,共8页
Background:The diversity of resource acquisition strategies of plant roots determines the species coexistence patterns to a certain extent.However,few root physiological traits have been investigated,such as root phos... Background:The diversity of resource acquisition strategies of plant roots determines the species coexistence patterns to a certain extent.However,few root physiological traits have been investigated,such as root phosphatase activity(PA)that affects plant phosphorus(P)uptake.Methods:Root PA and classical root functional traits were investigated for 21 coexisting species in a deciduous broad-leaved forest in warm temperate-subtropical transition zone,China.We analyzed the root order variation of absorptive fine root PA,clarified the attribution of root PA in root economic space(RES)and the different P acquisition strategies of co-occurring species based on the multidimensional RES theory,and determined the dominant factors affecting interspecific variation in root PA.Results:There was no distinct pattern of PA variation with root order in the first three root orders of absorptive fine roots,and root PA was constrained by phylogeny.Root PA is a competitive trait affiliated with the conservation gradient in RES.The tight linkages among root PA,mycorrhizal colonization,diameter,specific root length,and nitrogen concentration suggested trade-offs among P acquisition strategies of co-occurring species,i.e.species with long and fine roots acquire inorganic P by actively exploring the soil and secreting phosphatase to mineralize and hydrolyze organic P,while species with short and thick roots obtain P mainly by investing C in mycorrhizal partners.Conclusions:Collectively,our study provides an insight into the forest species coexistence in climatic transition zones,i.e.species coexistence mechanisms based on diverse phosphorus acquisition strategies. 展开更多
关键词 root phosphatase activity root order root economic space Phosphorus acquisition strategy Species coexistence
下载PDF
Root stoichiometric dynamics and homeostasis of invasive species Phyllostachys edulis and native species Cunninghamia lanceolata in a subtropical forest in China 被引量:3
4
作者 Chao Peng Jia Tu +3 位作者 Ming Yang Yong Meng Meiqun Li Wensheng Ai 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第5期2001-2010,共10页
The community species abundance and diversity declined with bamboo invasion had been widely reported worldwide.However,the physiological strategies used during root competition between native species and invasive bamb... The community species abundance and diversity declined with bamboo invasion had been widely reported worldwide.However,the physiological strategies used during root competition between native species and invasive bamboo are poorly understood.To clarify the mechanisms underlying such strategies,the stoichiometric dynamics and homeostasis of nitrogen,phosphorus,organic carbon in root orders of Phyllostachys edulis(I du[=Ⅰ-Pe,years 1 and 2];Ⅱdu[=Ⅱ-Pe,years 3 and 4]),Cunninghamia lanceolata in transition and pure forests were analyzed.With increasing intensity of bamboo invasion,N,P,and C content of C.lanceolata root orders declined,N and P content in P.edulis rhizome orders declined,while C increased,the stoichiometric ratios in mixed forest interface mainly increased,and the stoichiometric differences within native and invasive species root orders narrowed.Meanwhile,the stoichiometric homeostasis index(H)of elements in the same root order and even the same elements in different root orders were not consistent.H of most root orders(except some HP)was greater than 4,the H ranked order wasⅠ-Pe>Cl>Ⅱ-Pe in mixed interfaces,and the N:P ratio of most species root orders was greater than 16,despite being affected by invasion.Our research concluded that the bamboo invasion narrows stoichiometric differences within root orders,and the juvenile bamboo rhizome has a stronger capacity for homeostatic regulation than in adult bamboo and C.lanceolata,which is a key determinant of bamboo invasion success. 展开更多
关键词 Bamboo invasion root orders Nutrient dynamics Homeostatic regulation coefficient
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
5
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) Carbon(C) Nitrogen(N) Phosphorus(P) Pinus koraiensis
下载PDF
Do root modules still exist after they die? 被引量:1
6
作者 Jihong Li Chengming You +6 位作者 Li Zhang Han Li Bo Tan Yang Liu Lixia Wang Sining Liu Zhenfeng Xu 《Forest Ecosystems》 SCIE CSCD 2021年第2期303-310,共8页
Background:The terminal branch orders of plant root systems are increasingly known as an ephemeral module.This concept is crucial to recognize belowground processes.However,it is unknown if root modules still exist af... Background:The terminal branch orders of plant root systems are increasingly known as an ephemeral module.This concept is crucial to recognize belowground processes.However,it is unknown if root modules still exist after they die?Methods:The decomposition patterns of the first five root orders were observed for 3 years using a branch-order classification,a litter-bag method and sequential sampling in a common subalpine tree species(Picea asperata)of southwestern China.Results:Two root modules were observed during the 3-year incubation.Among the first five branch orders,the first three order roots exhibited temporal patterns of mass loss,nutrients and stoichiometry distinct from their woody mother roots throughout the experimental period.This study,for the first time,reported the decomposition pattern of each individual root order and found a similar decomposition dynamic among ephemeral root branches in a forest tree species.Conclusions:Results from this study suggest that root modules may also exist after death,while more data are needed for confirmation.The findings may further advance our understanding of architecture-associated functional heterogeneity in the fine-root system and also improve our ability to predict belowground processes. 展开更多
关键词 root branch order Fine roots Picea asperata Nitrogen PHOSPHORUS STOICHIOMETRY root decomposition
下载PDF
Morphological Characteristics and Nutrient Content of Fine Roots of 2-Year-Old and 3-Year-Old Eucalyptus grandis Plantation
7
作者 Xiaoyu DUAN Xianwei LI +2 位作者 Liuling ZHOU Weishuang WANG Hui CHEN 《Agricultural Biotechnology》 CAS 2012年第6期9-14,共6页
[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine... [ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation. 展开更多
关键词 Eucalyptus grandis Fine root root order Nutrient elements Morphological characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部