期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New Strigolactone Analogs as Plant Hormones with Low Activities in the Rhizosphere 被引量:3
1
作者 Francois-Didier Boyer Alexandre de Saint Germain +12 位作者 Jean-Bernard Pouvreau Guillaume Clave Jean-Paul Pillot Amelie Roux Amanda Rasmussen Stephen Depuydt Dominique Lauresserguesh Nicolas Frei dit Frey Thomas S.A. Heugebaert Christian V. Stevens Danny Geelen Sofie Goormachtig Catherine Rameau 《Molecular Plant》 SCIE CAS CSCD 2014年第4期675-690,共16页
Strigolactones (SLs) are known not only as plant hormones, but also as rhizosphere signals for establishing symbiotic and parasitic interactions. The design of new specific SL analogs is a challenging goal in unders... Strigolactones (SLs) are known not only as plant hormones, but also as rhizosphere signals for establishing symbiotic and parasitic interactions. The design of new specific SL analogs is a challenging goal in understanding the basic plant biology and is also useful to control plant architectures without favoring the development of parasitic plants. Two different molecules (23 (3'-methyI-GR24), 31 (thia-3'-methyl-debranone-like molecule)) already described, and a new one (AR36), for which the synthesis is presented, are biologically compared with the well-known GR24 and the recently identified CISA-1. These different structures emphasize the wide range of parts attached to the D-ring for the bioactivity as a plant hormone. These new compounds possess a common dimethylbutenolide motif but their structure varies in the ABC part of the molecules: 23 has the same ABC part as GR24, while 31 and AR36 carry, respectively, an aromatic ring and an acyclic carbon chain. Detailed information is given for the bioactivity of such derivatives in strigolactone synthesis or in perception mutant plants (pea rmsl and rms4, Arabidopsis max2 and, max4) for different hormonal functions along with their action in the rhizosphere on arbuscular mycorrhizal hyphal growth and parasitic weed germination. 展开更多
关键词 STRIGOLACTONES synthetic analogs Pisum sativum ARABIDOPSIS root parasitic plants Gigaspora rosea plant growth regulator.
原文传递
Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications
2
作者 Jian You Wang Muhammad Jamil +12 位作者 Pei-Yu Lin Tsuyoshi Ota Valentina Fiorilli Mara Novero Randa A.Zarban Boubacar AKountche Ikuo Takahashi Claudio Martinez Luisa Lanfranco Paola Bonfante Angel R.de Lera Tadao Asami Salim Al-Babili 《Molecular Plant》 SCIE CAS CSCD 2020年第11期1654-1661,共8页
Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development.In addition,zaxinone has a large application potential in agriculture,due to its growth-promoting activity and capabil... Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development.In addition,zaxinone has a large application potential in agriculture,due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone(SL)production.However,zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization.In this study,we developed easy-to-synthesize and highly efficient mimics of zaxinone(MiZax).We performed a structure-activity relationship study using a series of apocarotenoids distinguished from zaxinone by different structural features.Using the obtained results,we designed several phenyl-based compounds synthesized with a high-yield through a simple method.Activity tests showed that MiZax3 and MiZax5 exert zaxinone activity in rescuing root growth of a zaxinone-deficient rice mutant,promoting growth,and reducing SL content in roots and root exudates of wild-type plants.Moreover,these compounds were at least as efficient as zaxinone in suppressing transcript level of SL biosynthesis genes and in alleviating Striga infestation under greenhouse conditions,and did not negatively impact mycorrhization.Taken together,MiZax are a promising tool for elucidating zaxinone biology and investigating rice development,and suitable candidates for combating Striga and increasing crop growth. 展开更多
关键词 APOCAROTENOIDS zaxinone zaxinone mimics STRIGOLACTONE STRIGA root parasitic plants
原文传递
Confirming Stereochemical Structures of Strigolactones Produced by Rice and Tobacco 被引量:9
3
作者 Xiaonan Xie Kaori Yoneyama +7 位作者 Takaya Kisugi Kenichi Uchida Seisuke Ito Kohki Akiyama Hideo Hayashi Takao Yokota Takahito Nomura Koichi Yoneyama 《Molecular Plant》 SCIE CAS CSCD 2013年第1期153-163,共11页
Major strigolactones (SLs) produced by rice (Oryza sativa L. cv. Nipponbare) and tobacco (Nicotiana tabacum L. cv. Michinoku No. 1) were purified and their stereochemical structures were determined by comparing ... Major strigolactones (SLs) produced by rice (Oryza sativa L. cv. Nipponbare) and tobacco (Nicotiana tabacum L. cv. Michinoku No. 1) were purified and their stereochemical structures were determined by comparing with optically pure synthetic standards for their NMR and CD data and retention times and mass fragmentations in ESI-LC/MS and GC-MS. SLs purified from root exudates of rice plants were orobanchol, orobanchyl acetate, and ent-2"-epi-5-deoxystr- igol. In addition to these SLs, 7-oxoorobanchyl acetate and the putative three methoxy-5~deoxystrigol isomers were detected by LC-MS/MS. The production of 7-oxoorobanchyl acetate seemed to occur in the early growth stage, as it was detected only in the root exudates collected during the first week of incubation. The root exudates of tobacco contained at least 11 SLs, including solanacol, solanacyl acetate, orobanchol, ent-2"-epi-orobanchol, orobanchyl acetate, ent-2'- epi-orobanchyl acetate, 5-deoxystrigol, ent-2"-epi-5-deoxystrigol, and three isomers of putative didehydro-orobanchol whose structures remain to be clarified. Furthermore, two sorgolactone isomers but not sorgolactone were detected as minor SLs by LC-MS/MS analysis. It is intriguing to note that rice plants produced only orobanchol-type SLs, derived from ent-2"-epi-5-deoxystrigol, but both orobanchol-type and strigol-type SLs, derived from 5-deoxystrigol were detected in tobacco plants. 展开更多
关键词 germination stimulant OROBANCHE RICE root parasitic plant STRIGA STRIGOLACTONE tobacco.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部