Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c...Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.展开更多
An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) o...An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based day-time leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elected, but not at ambient CO2. Nighttime leaf Rd. and Rdm were unthected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda. was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.展开更多
On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60...On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60,80,100,150,200,500,1000,2000,3000 mg/L)were analyzed.The results showed that maize germination rate,germination vigor and growth index decreased with the increase of Pb concentration.The root length,surface area of maize increased by 0.21%-81.58%,8.99%-73.43%,1.50%-77.37%,respectively,under 20-500 mg/L Pb concentration.However,these parameters under 1000-3000 mg/L Pb concentration decreased by 37.86%-553.54%,44.99%-766.16%,55.99%-92.81%,respectively,and these lowest value appeared in 3000 mg/L Pb treatment.The root volume of maize increased by 4.57%-89.25%in 20-80 mg/L Pb concentration,and it decreased with the increase of Pb concentration when the Pb concentration was higher than 80 mg/L and decreased by 94.13%in 3000 mg/L Pb.The root surface area and length of 0.50-1.00 diameter class were higher than those of other diameter classes,and these value of maize under 500 mg/L Pb were higher than those of other concentrations.The length and perimeter of maize leaves with the highest value of 220.36 and 962.68 mm,respectively appeared in 60 mg/L Pb treatment.The leaf width and area of maize with the highest value of 15.68 mm and 2448.31 mm^(2),respectively,appeared in 40 mg/L Pb treatment,which indicated that the leaf traits of maize were promoted by low concentration Pb and inhibited by high concentration Pb.展开更多
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
[Objective] The research aimed to discuss the effects on rooting,physiological and biochemical indicators of Bougainvillea spectabilis cuttings by remaining leaf combining with soaking cuttings in IBA.[Method] Effects...[Objective] The research aimed to discuss the effects on rooting,physiological and biochemical indicators of Bougainvillea spectabilis cuttings by remaining leaf combining with soaking cuttings in IBA.[Method] Effects of remaining leaf combining with IBA on rooting,physiological and biochemical indicators of B.spectabilis cuttings were studied under the regulation and control of intelligent seed propagation system,and then set four treatments:remaining leaf combining with soaking in clean water,remaining leaf combining with soaking in IBA,defoliation combining soaking in clean water,and defoliation combining with soaking in IBA.[Result] The soluble sugar content was high,but indoleacetic acid oxidase activity was lower in the initial stage of adventitious root differentiation in treatment of remaining leaf.While the rooting number,root length,the root mass growth and survival rate of cutting were obviously higher than that in treatment of defoliation.Compared to the treatment soaking in clean water,the treatment soaking in 500×10^-6 IBA increased the soluble sugar content in leaves of cuttings and enhanced rooting of cuttings.[Conclusion] The survival rate and rooting of cuttings improved obviously in the treatment of remaining leaf combining with soaking in 500×10^-6 IBA before cutting under the regulation and control of intelligent seed propagation system.展开更多
[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture w...[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.展开更多
[ Objective ] The paper was to study the effects of anti-nematode preparations with different mechanisms on changes of enzyme systems and membrane permeability of tomato leaves, so as to provide reference basis for ef...[ Objective ] The paper was to study the effects of anti-nematode preparations with different mechanisms on changes of enzyme systems and membrane permeability of tomato leaves, so as to provide reference basis for effective control of soil root-knot nematode in greenhouse. [ Method] With tomato seedlings af- fected by root-knot nematode as material, changes of superoxide dismutase(SOD), peroxidase( POD), relative conductivity and malondialdehyde (MDA) in toma- toes were tested after the seedling soil was treated by preparations of Wuxianmei, Hailvsu, Duxiandna and Avermectin. [ Result] After treated by different prepara- tions, SOD and POD activity of tomato leaves were higher than control, and that treated by Wuxianmei was the highest. In addition to Duxiandna, the relative con- ductivity and MDA content of other treatments were significantly lower than control. When tomatoes were planted for 70 d, the effect of Avermectin against reot-knot nematode Was the best of 66.3%. [ Conclusion] After tomatoes were infected by root-knot nematode, different preparation treatments all had certain control effect, which made the physical indicators of tomato have obvious change. Integrated control of multiple preparations in greenhouse was beneficial to control soil root-knot nematode.展开更多
Root/shoot(R/S)ratio is an important index for assessing plant health,and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents.The R/S ra...Root/shoot(R/S)ratio is an important index for assessing plant health,and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents.The R/S ratio has been discussed in the context of ecological theory and its potential importance in ecological succession,where species follow different strategies for above-ground growth for light or below-ground competition for water and nutrients.We present evidence showing the R/S ratio follows a biphasic dose–response relationship under stress,typical of hormesis.The R/S ratio in response to stress has been widely compared among species and ecological succession classes.It is constrained by a variety of factors such as ontogeny.Furthermore,the current literature lacks dose-response studies incorporating the full dose–response continuum,hence limiting scientific understanding and possible valuable application.The data presented provide an important perspective for new-generation studies that can advance current ecological understanding and improve carbon storage estimates by R/S ratio considerations.Hormetic response of the R/S ratio can have an important role in forestry for producing seedlings with desired characteristics to achieve maximum health/productivity and resilience under plantation conditions.展开更多
Dry seeding is a resource-saving rice establishment method. With an equivalent yield, dry seeded flooded rice (DSR) has been considered as a replacement for traditional transplanted flooded rice (TFR). However, th...Dry seeding is a resource-saving rice establishment method. With an equivalent yield, dry seeded flooded rice (DSR) has been considered as a replacement for traditional transplanted flooded rice (TFR). However, the differences in leaf and root senescence during grain filling between DSR and TFR were seldom identified. In this study, the root length, root tip number and leaf senescence of rice varieties Huanghuazhan and Yangliangyou 6 during ripening were compared between DSR and TFR. Results showed that top three leaves in DSR had the characteristics of relatively lower SPAD value, lower N content and premature leaf senescence. In addition, both the total root length and total root tip number of DSR were significantly lower than those of TFR. In conclusion, premature and quick leaf senescence was related with inadequate root length and root tip number during ripening, which might result from the deficiency of nitrogen supply in DSR. Techniques on improving leaf nitrogen status and delaying the leaf senescence during grain-filling in DSR should be developed in future researches.展开更多
A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk den...A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.展开更多
A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diam...A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots.展开更多
The aim was to explore the linear regression prediction models between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum in autumn idle land. [Method] The relationships between sowing tim...The aim was to explore the linear regression prediction models between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum in autumn idle land. [Method] The relationships between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum were simulated and compared by employing field plot experiment and linear regression analysis. [Result] The sowing time had a great impact on plant height, leaf stem ratio and DW/FW ratio of forage sorghum in autumn idle land. With the delay of sowing time, the plant height and DW/FW ratio of forage sorghum decreased, while the leaf stem ratio increased. The regression models between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum were established: plant height and sowing time, yheight = 234.725- 5.005X; leaf stem ratio and sowing time,ylcaf= 0.096 + 0,019x; DW/FW ratio and sowing time, ydry= 0.305-0.002X. From July 23rd to August 30th, the plant height of forage sorghum was reduced by 5.005 cm, the leaf stem ratio was increased by 0.019 and the DW/FW ratio was reduced by 0.002 in average when hhe sowing time was delayed by one day. [Conclusion] This study provides a theoretical support for the production of forage sorghum in autumn idle land.展开更多
The extract of crofton weed(Eupatorium adenophorum) inhibits seed germination and weed growth;however,the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and...The extract of crofton weed(Eupatorium adenophorum) inhibits seed germination and weed growth;however,the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear.In this study,we investigated the effects of the leaf extract of crofton weed(LECW) on primary root(PR) growth in maize seedlings.Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner.Physiological analysis indicated that the LECW induced reactive oxygen species(ROS) accumulation in root tips,thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips,finally leading to cell death in root border cells(RBCs) and PR growth inhibition.The LECW also inhibited pectin methyl esterase(PME) activity,thereby decreasing the RBC number.Taken together,our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs.The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.展开更多
Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information...Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations.展开更多
Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to ...Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.展开更多
Nitrogen(N), the major forms of which are nitrate(NO3–) and ammonium(NH4+), plays an important role in plant growth and mediation of root development. However, the role of auxin in root growth in response to differen...Nitrogen(N), the major forms of which are nitrate(NO3–) and ammonium(NH4+), plays an important role in plant growth and mediation of root development. However, the role of auxin in root growth in response to different NH4+/NO3– ratios remains unclear. Two tobacco cultivars(Nicotiana tabacum L.) were adopted in this study, which displayed variant growth features under the situations with sole NO3– nutrition ratio(NH4+/NO3– ratio: 0/100), low NO3– nutrition ratio(NH4+/NO3– ratio: 97/3), and optimal NH4+/NO3– ratio(50/50). We investigated the effects of the different NH4+/NO3– ratios on the formation and elongation of lateral roots(LRs), auxin concentration, DR5::GUS expression, 3 H-labeled indole acetic acid([3 H]IAA) transport, and the expression of six PIN genes in tobacco roots. We also examined the effects of exogenous auxin and a transport inhibitor on LRs growth. The results are shown as follows, compared to optimal N nutrition conditions, the biomass and nitrogen(N) accumulation were largely reduced by sole and low NO3– nutrition treatment in NC89, but no difference was observed in Zhongyan 100. In most cases, sole and low NO3– nutrition impaired the elongation and formation of firstorder lateral roots(1° LRs), only in NC89, thus reducing the root growth. IAA concentration and DR5::GUS expression levels decreased in roots when NC89 was subjected to sole and low NO3– nutrition media, suggesting that different NH4+/NO3– ratios affect the transport of auxin from leaves to roots. Results were similar following exogenous NAA application to low NO3– nutrition treated seedlings. Based on direct [3 H]IAA transport measurement, the transport of polar auxin from shoots to roots decreased due to low NO3– nutrition. PIN4 expression levels were markedly decreased in roots of NC89by sole and low NO3– nutrition, while they were unaffected in Zhongyan 100 roots. Overall, our findings suggest that LRs formation in tobacco seedlings is regulated by NH4+/NO3– ratios via modifying polar transport of auxin.展开更多
Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relatio...Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relationship between root morphology,subtending leaf physiology,and fiber quality of contrasting N-efficient cotton genotypes in response to N.Methods:We analyzed the above parameters of CCRI 69(N-efficient)and Xinluzao-30(XLZ-30,N-inefficient)under control(2.5 mmol·L^(-1))and high N(5 mmol·L^(-1))conditions.Results:The results showed that root morphological traits were increased in CCRI-69 under control conditions than high N.Subtending leaf morphology,chlorophyll and carotenoid contents,free amino acids,and soluble proteins were higher under high N as compared with the control.However,soluble sugars,fructose,sucrose contents,and sucrose phosphate synthase were higher under control conditions than high N across the growth stages.Irrespective of the N conditions,all morphological and physiological traits of cotton subtending leaf were higher in CCRI-69 than XLZ-30.Except for fiber uniformity,fiber quality traits like fiber length,strength,micronaire,and elongation were improved under control conditions than high N.Between the genotypes,CCRI-69 had significantly higher fiber length,strength,micronaire,and elongation as compared with XLZ-30.Strong positive correlations were found between root morphology,soluble sugars,sucrose content,and sucrose phosphate synthase activity with fiber quality traits,respectively.Conclusions:These findings suggest that CCRI-69 performed better in terms of growth and fiber quality under relatively low N condition,which will help to reduce fertilizer use,the cost of production,and environmental pollution.展开更多
Soil temperature influences crop growth and quality under field and greenhouse conditions;however, precise investigation using controlled cultivation systems is largely lacking. We investigated effects of root-zone te...Soil temperature influences crop growth and quality under field and greenhouse conditions;however, precise investigation using controlled cultivation systems is largely lacking. We investigated effects of root-zone temperatures on growth and components of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave) under a controlled cultivation system at 20°C. Compared with ambient root-zone temperature exposure, a 7-day low temperature exposure reduced leaf area, stem size, fresh weight, and water content of lettuce. However, root-zone heating treatments produced no significant changes in growth parameters compared with ambient conditions. Leaves under low root-zone temperature contained higher anthocyanin, phenols, sugar, and nitrate concentrations than leaves under other temperatures. Root oxygen consumption declined with low temperature root exposure, but not with root heating. Leaves of plants under low rootzone temperature showed hydrogen peroxide production, accompanied by lipid peroxidation. Therefore, low temperature root treatment is suggested to induce oxidative stress responses in leaves, activating antioxidative secondary metabolic pathways.展开更多
The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess wheth...The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess whether low Ca2+ content and Ca2+/Na+ ratio of leaf tissue or stem tissue determine salinity tolerance in terms of economic yield (kernel yield) in groundnut. It revealed that the varieties, “Binachinabadam-6”, “Binachinabadam-5” and the F1 G2 × G3 were most tolerant based on kernel yield under 8 dS/m and 10 dS/m salinity stresses. These two tolerant varieties and the F1 also showed lower Ca2+ and Ca2+/Na+ ratios in leaf tissue, which indicated lower Ca2+ and Ca2+/Na+ ratio of leaf tissue determined salinity tolerance in terms of kernel yield in Spanish type groundnut. These findings could be applied in future plant breeding applications for screening salt tolerant Spanish type groundnut genotypes.展开更多
The aim of this study is to assess if there is a significant difference between crown to root ratio of male and female permanent teeth in Chinese people in Shanghai.Methods: For this purpose one thousand four hundred ...The aim of this study is to assess if there is a significant difference between crown to root ratio of male and female permanent teeth in Chinese people in Shanghai.Methods: For this purpose one thousand four hundred (700,male and 700,female) extracted teeth were collected between age 25-35 and the crown length (CL) and root length (RL) of permanent teeth were measured by a precise caliper.Statistical analyses were performed with the SPSS 17 software by Student's t-test method.Results: The mean crown length of permanent teeth of male was found to be larger than that of female except for maxillary central incisor and the mean root length of male was found to be comparatively larger than that of female.Conclusion: There was a significant difference in root to crown ratio (RL/CL) between male maxillary teeth and mandibular teeth and female ones.The RL/CL ratio of male tends to be larger than those of female in Shanghai population.展开更多
文摘Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.
基金the National institute for Global Environmental Change (DOENIGEC), Program for Ecosystem Research (DOE-PER Grant D E- FG O Z-9
文摘An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based day-time leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elected, but not at ambient CO2. Nighttime leaf Rd. and Rdm were unthected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda. was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.
基金Basic Research in Yunnan Local Colleges and Universities(2017FH001-026,2018FH001-004)the National Natural Science Foundation of China(42167009,31300349)International Joint Innovation Team for Yunnan Plateau Lakes and Great Lakes of North America which is sponsored by Yunnan Provincial Education Department(to XC),and Scientific and Technological Innovation team Project of Agricultural Resources Utilization of Kunming University.
文摘On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60,80,100,150,200,500,1000,2000,3000 mg/L)were analyzed.The results showed that maize germination rate,germination vigor and growth index decreased with the increase of Pb concentration.The root length,surface area of maize increased by 0.21%-81.58%,8.99%-73.43%,1.50%-77.37%,respectively,under 20-500 mg/L Pb concentration.However,these parameters under 1000-3000 mg/L Pb concentration decreased by 37.86%-553.54%,44.99%-766.16%,55.99%-92.81%,respectively,and these lowest value appeared in 3000 mg/L Pb treatment.The root volume of maize increased by 4.57%-89.25%in 20-80 mg/L Pb concentration,and it decreased with the increase of Pb concentration when the Pb concentration was higher than 80 mg/L and decreased by 94.13%in 3000 mg/L Pb.The root surface area and length of 0.50-1.00 diameter class were higher than those of other diameter classes,and these value of maize under 500 mg/L Pb were higher than those of other concentrations.The length and perimeter of maize leaves with the highest value of 220.36 and 962.68 mm,respectively appeared in 60 mg/L Pb treatment.The leaf width and area of maize with the highest value of 15.68 mm and 2448.31 mm^(2),respectively,appeared in 40 mg/L Pb treatment,which indicated that the leaf traits of maize were promoted by low concentration Pb and inhibited by high concentration Pb.
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.
基金Supported by Natural Science Foundation of Fujian Province(2008J0052 )Technology Program in Xiamen City(3502Z20072007)~~
文摘[Objective] The research aimed to discuss the effects on rooting,physiological and biochemical indicators of Bougainvillea spectabilis cuttings by remaining leaf combining with soaking cuttings in IBA.[Method] Effects of remaining leaf combining with IBA on rooting,physiological and biochemical indicators of B.spectabilis cuttings were studied under the regulation and control of intelligent seed propagation system,and then set four treatments:remaining leaf combining with soaking in clean water,remaining leaf combining with soaking in IBA,defoliation combining soaking in clean water,and defoliation combining with soaking in IBA.[Result] The soluble sugar content was high,but indoleacetic acid oxidase activity was lower in the initial stage of adventitious root differentiation in treatment of remaining leaf.While the rooting number,root length,the root mass growth and survival rate of cutting were obviously higher than that in treatment of defoliation.Compared to the treatment soaking in clean water,the treatment soaking in 500×10^-6 IBA increased the soluble sugar content in leaves of cuttings and enhanced rooting of cuttings.[Conclusion] The survival rate and rooting of cuttings improved obviously in the treatment of remaining leaf combining with soaking in 500×10^-6 IBA before cutting under the regulation and control of intelligent seed propagation system.
基金Supported by Key Scientific and Technological Project of Henan Province(072102150001)~~
文摘[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.
基金Supported by Transformation and Promotion Projects of Agriculture Science and Technology Achievements of Tianjin City"Integration and Demonstration of Integrated Control Technology of Greenhouse Vegetable Fields with Continuous Cropping Obstacles"(0804140)Basic Application and Cutting-edge Technology Research Projects of Tianjin City"Risk Assessment and Regulation Research of Nitrogen and Phosphorus Non-point Source Pollution in Facility Agriculture"(09JCYBJC08600)~~
文摘[ Objective ] The paper was to study the effects of anti-nematode preparations with different mechanisms on changes of enzyme systems and membrane permeability of tomato leaves, so as to provide reference basis for effective control of soil root-knot nematode in greenhouse. [ Method] With tomato seedlings af- fected by root-knot nematode as material, changes of superoxide dismutase(SOD), peroxidase( POD), relative conductivity and malondialdehyde (MDA) in toma- toes were tested after the seedling soil was treated by preparations of Wuxianmei, Hailvsu, Duxiandna and Avermectin. [ Result] After treated by different prepara- tions, SOD and POD activity of tomato leaves were higher than control, and that treated by Wuxianmei was the highest. In addition to Duxiandna, the relative con- ductivity and MDA content of other treatments were significantly lower than control. When tomatoes were planted for 70 d, the effect of Avermectin against reot-knot nematode Was the best of 66.3%. [ Conclusion] After tomatoes were infected by root-knot nematode, different preparation treatments all had certain control effect, which made the physical indicators of tomato have obvious change. Integrated control of multiple preparations in greenhouse was beneficial to control soil root-knot nematode.
基金supported by JSPS KAKENHI Grant Number JP17F17102German Research Foundation(BE4189/1-3)+1 种基金the US Air Force [AFOSR FA9550-13-1-0047]Exxon Mobil Foundation [S18200000000256]
文摘Root/shoot(R/S)ratio is an important index for assessing plant health,and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents.The R/S ratio has been discussed in the context of ecological theory and its potential importance in ecological succession,where species follow different strategies for above-ground growth for light or below-ground competition for water and nutrients.We present evidence showing the R/S ratio follows a biphasic dose–response relationship under stress,typical of hormesis.The R/S ratio in response to stress has been widely compared among species and ecological succession classes.It is constrained by a variety of factors such as ontogeny.Furthermore,the current literature lacks dose-response studies incorporating the full dose–response continuum,hence limiting scientific understanding and possible valuable application.The data presented provide an important perspective for new-generation studies that can advance current ecological understanding and improve carbon storage estimates by R/S ratio considerations.Hormetic response of the R/S ratio can have an important role in forestry for producing seedlings with desired characteristics to achieve maximum health/productivity and resilience under plantation conditions.
基金supported by the National Natural Science Foundation of China(Grant No.31371571)the National High Technology Research and Development Program of China(863 Program)(Grant No.2014AA10A605)the Fundamental Research Funds for the Central Universities(Grant No.2662017JC001)
文摘Dry seeding is a resource-saving rice establishment method. With an equivalent yield, dry seeded flooded rice (DSR) has been considered as a replacement for traditional transplanted flooded rice (TFR). However, the differences in leaf and root senescence during grain filling between DSR and TFR were seldom identified. In this study, the root length, root tip number and leaf senescence of rice varieties Huanghuazhan and Yangliangyou 6 during ripening were compared between DSR and TFR. Results showed that top three leaves in DSR had the characteristics of relatively lower SPAD value, lower N content and premature leaf senescence. In addition, both the total root length and total root tip number of DSR were significantly lower than those of TFR. In conclusion, premature and quick leaf senescence was related with inadequate root length and root tip number during ripening, which might result from the deficiency of nitrogen supply in DSR. Techniques on improving leaf nitrogen status and delaying the leaf senescence during grain-filling in DSR should be developed in future researches.
文摘A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.
基金National Natural Science Foundation of China (nos. 40231003 , 40110817) Knowledge Innovation Program of Chinese Academy of Sciences (no. KZCX2-408) the National Key Project on Basic Sciences (no. 2002CB714003).
文摘A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots.
文摘The aim was to explore the linear regression prediction models between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum in autumn idle land. [Method] The relationships between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum were simulated and compared by employing field plot experiment and linear regression analysis. [Result] The sowing time had a great impact on plant height, leaf stem ratio and DW/FW ratio of forage sorghum in autumn idle land. With the delay of sowing time, the plant height and DW/FW ratio of forage sorghum decreased, while the leaf stem ratio increased. The regression models between sowing time and plant height, leaf stem ratio and DW/FW ratio of forage sorghum were established: plant height and sowing time, yheight = 234.725- 5.005X; leaf stem ratio and sowing time,ylcaf= 0.096 + 0,019x; DW/FW ratio and sowing time, ydry= 0.305-0.002X. From July 23rd to August 30th, the plant height of forage sorghum was reduced by 5.005 cm, the leaf stem ratio was increased by 0.019 and the DW/FW ratio was reduced by 0.002 in average when hhe sowing time was delayed by one day. [Conclusion] This study provides a theoretical support for the production of forage sorghum in autumn idle land.
基金the Key Project of Science and Technology of Shanxi Province(20150311016-5)the Science and Technology innovation Foundation of Shanxi Agricultural University(2017ZZ09)。
文摘The extract of crofton weed(Eupatorium adenophorum) inhibits seed germination and weed growth;however,the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear.In this study,we investigated the effects of the leaf extract of crofton weed(LECW) on primary root(PR) growth in maize seedlings.Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner.Physiological analysis indicated that the LECW induced reactive oxygen species(ROS) accumulation in root tips,thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips,finally leading to cell death in root border cells(RBCs) and PR growth inhibition.The LECW also inhibited pectin methyl esterase(PME) activity,thereby decreasing the RBC number.Taken together,our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs.The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.
基金The study was financially supported by the National Key R&D Program of China(2017YFC0504601).
文摘Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations.
基金This research was supported by the National Natural Science Foundation of China(41807335)the Shandong Provincial Natural Science Foundation,China(ZR2020MC040)+2 种基金the National Key Technology Research and Development Program of China(2019YFC0507602-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020434)the National Postdoctoral Program for Innovative Talents(BX201700279).
文摘Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.
基金funded by the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences (ASTIP-TRIC03)the Science Foundation for Young Scholars of Tobacco Research Institute of Chinese Academy of Agricultural Sciences (2018B01)+2 种基金the National Nature Science Foundation of China (3601818)the Liangshan Branch of Sichuan Tobacco Corporation, China (LSYC201805)the Hongyunhonghe Tobacco (Group) Co., Ltd., China (HYHH2016YL02)
文摘Nitrogen(N), the major forms of which are nitrate(NO3–) and ammonium(NH4+), plays an important role in plant growth and mediation of root development. However, the role of auxin in root growth in response to different NH4+/NO3– ratios remains unclear. Two tobacco cultivars(Nicotiana tabacum L.) were adopted in this study, which displayed variant growth features under the situations with sole NO3– nutrition ratio(NH4+/NO3– ratio: 0/100), low NO3– nutrition ratio(NH4+/NO3– ratio: 97/3), and optimal NH4+/NO3– ratio(50/50). We investigated the effects of the different NH4+/NO3– ratios on the formation and elongation of lateral roots(LRs), auxin concentration, DR5::GUS expression, 3 H-labeled indole acetic acid([3 H]IAA) transport, and the expression of six PIN genes in tobacco roots. We also examined the effects of exogenous auxin and a transport inhibitor on LRs growth. The results are shown as follows, compared to optimal N nutrition conditions, the biomass and nitrogen(N) accumulation were largely reduced by sole and low NO3– nutrition treatment in NC89, but no difference was observed in Zhongyan 100. In most cases, sole and low NO3– nutrition impaired the elongation and formation of firstorder lateral roots(1° LRs), only in NC89, thus reducing the root growth. IAA concentration and DR5::GUS expression levels decreased in roots when NC89 was subjected to sole and low NO3– nutrition media, suggesting that different NH4+/NO3– ratios affect the transport of auxin from leaves to roots. Results were similar following exogenous NAA application to low NO3– nutrition treated seedlings. Based on direct [3 H]IAA transport measurement, the transport of polar auxin from shoots to roots decreased due to low NO3– nutrition. PIN4 expression levels were markedly decreased in roots of NC89by sole and low NO3– nutrition, while they were unaffected in Zhongyan 100 roots. Overall, our findings suggest that LRs formation in tobacco seedlings is regulated by NH4+/NO3– ratios via modifying polar transport of auxin.
基金the financial support from the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS),Cotton Research Institute,CAAS,Central Level Public Welfare Scientific Institutes Basic Research and Business Special Funding Project(Grant No.1610162021025)the State Key Laboratory of Cotton Biology,Institute of Cotton Research of CAAS(CB2021C10).
文摘Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relationship between root morphology,subtending leaf physiology,and fiber quality of contrasting N-efficient cotton genotypes in response to N.Methods:We analyzed the above parameters of CCRI 69(N-efficient)and Xinluzao-30(XLZ-30,N-inefficient)under control(2.5 mmol·L^(-1))and high N(5 mmol·L^(-1))conditions.Results:The results showed that root morphological traits were increased in CCRI-69 under control conditions than high N.Subtending leaf morphology,chlorophyll and carotenoid contents,free amino acids,and soluble proteins were higher under high N as compared with the control.However,soluble sugars,fructose,sucrose contents,and sucrose phosphate synthase were higher under control conditions than high N across the growth stages.Irrespective of the N conditions,all morphological and physiological traits of cotton subtending leaf were higher in CCRI-69 than XLZ-30.Except for fiber uniformity,fiber quality traits like fiber length,strength,micronaire,and elongation were improved under control conditions than high N.Between the genotypes,CCRI-69 had significantly higher fiber length,strength,micronaire,and elongation as compared with XLZ-30.Strong positive correlations were found between root morphology,soluble sugars,sucrose content,and sucrose phosphate synthase activity with fiber quality traits,respectively.Conclusions:These findings suggest that CCRI-69 performed better in terms of growth and fiber quality under relatively low N condition,which will help to reduce fertilizer use,the cost of production,and environmental pollution.
文摘Soil temperature influences crop growth and quality under field and greenhouse conditions;however, precise investigation using controlled cultivation systems is largely lacking. We investigated effects of root-zone temperatures on growth and components of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave) under a controlled cultivation system at 20°C. Compared with ambient root-zone temperature exposure, a 7-day low temperature exposure reduced leaf area, stem size, fresh weight, and water content of lettuce. However, root-zone heating treatments produced no significant changes in growth parameters compared with ambient conditions. Leaves under low root-zone temperature contained higher anthocyanin, phenols, sugar, and nitrate concentrations than leaves under other temperatures. Root oxygen consumption declined with low temperature root exposure, but not with root heating. Leaves of plants under low rootzone temperature showed hydrogen peroxide production, accompanied by lipid peroxidation. Therefore, low temperature root treatment is suggested to induce oxidative stress responses in leaves, activating antioxidative secondary metabolic pathways.
文摘The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess whether low Ca2+ content and Ca2+/Na+ ratio of leaf tissue or stem tissue determine salinity tolerance in terms of economic yield (kernel yield) in groundnut. It revealed that the varieties, “Binachinabadam-6”, “Binachinabadam-5” and the F1 G2 × G3 were most tolerant based on kernel yield under 8 dS/m and 10 dS/m salinity stresses. These two tolerant varieties and the F1 also showed lower Ca2+ and Ca2+/Na+ ratios in leaf tissue, which indicated lower Ca2+ and Ca2+/Na+ ratio of leaf tissue determined salinity tolerance in terms of kernel yield in Spanish type groundnut. These findings could be applied in future plant breeding applications for screening salt tolerant Spanish type groundnut genotypes.
文摘The aim of this study is to assess if there is a significant difference between crown to root ratio of male and female permanent teeth in Chinese people in Shanghai.Methods: For this purpose one thousand four hundred (700,male and 700,female) extracted teeth were collected between age 25-35 and the crown length (CL) and root length (RL) of permanent teeth were measured by a precise caliper.Statistical analyses were performed with the SPSS 17 software by Student's t-test method.Results: The mean crown length of permanent teeth of male was found to be larger than that of female except for maxillary central incisor and the mean root length of male was found to be comparatively larger than that of female.Conclusion: There was a significant difference in root to crown ratio (RL/CL) between male maxillary teeth and mandibular teeth and female ones.The RL/CL ratio of male tends to be larger than those of female in Shanghai population.