While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further devel...While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs.展开更多
Korean spruce (Picea koraiensis Sieb. E1 Zucc.) is one of the main afforestation species in northern China. Seedling quality is a critical factor at planting time. To test whether the synergistic growth enhancement ...Korean spruce (Picea koraiensis Sieb. E1 Zucc.) is one of the main afforestation species in northern China. Seedling quality is a critical factor at planting time. To test whether the synergistic growth enhancement of Scotch pine (P. sylvestris var. mongolica) seedlings brought by the plant beneficial fungus Trichoderma virens (J.H. Mill., Giddens and A.A. Foster) Arx and ectomycorrhizal fungus (Suillus luteus (L.) Roussel.) can also benefit Korean spruce seed- lings, we examined the effects of S. luteus and T. virens on the growth of P. koraiensis seedlings and drought resistance of P. sylvestris var. mongolica in peat soils. The two fungi were added to sterilized peat soil in pots, and the plants were grown for 4 months. Seedling growth and physiological variables, including mycorrhizal colonization rate of roots, biomass, and chlorophyll content, were examined. The colonization rate of the mycorrhizal fungus on P. koraiensis exceeded 65 %, and the synergism between S. luteus and T. virens enhanced most of the variables for P. koraiensis seedlings after inoculation with S. luteus then 30 days later with T. virens as in our published results for seedlings of P. sylvestris var. mongolica. When seedlings of P. sylvestris var. mongolica were inoculated with this sequence, they became more drought tolerant. T. virens also induced S. luteus to produce -l,3-glucanase and chitinase. This inocu- lation sequence at planting can thus improve the quality of P. sylvestris var. mongolica and P. koraiensis seedlings and substantiates our previous results.展开更多
The in situ growth of nano-array on material structure is a novel and high-efficient strategy to design catalysts,however,it still remains a challenge to fabricate unique nano-architecture electrocatalyst with promine...The in situ growth of nano-array on material structure is a novel and high-efficient strategy to design catalysts,however,it still remains a challenge to fabricate unique nano-architecture electrocatalyst with prominent activity and superior durability for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).Herein,a unique nano-architecture catalyst is successfully synthesized by using NiFe LDH nanosheets as framework to the in situ growth Mo-doped Ni2 P ultrafine nanosheets(marked as Mo-Ni2 P@NiFe LDH/NF).The unique 3 D core-shell nano-architecture is favorable for enhancing electron transfer/mass diffusion,providing abundant active sites,prompting O2/H2 gas release,and creating the synergistic effect between Mo-Ni2 P and NiFe LDH.Therefore,comparing with pure NiFe LDH/NF and MoNi2 P/NF electrodes,walnut-like Mo-Ni2 P@Ni Fe LDH/NF catalyst exhibits significantly improved electrocatalytic activities and durability towards OER(269 m V@40 m A cm^-2),HER(82 mV@10 mA cm^-2),and overall water splitting(1.46 V@10 m A cm^-2),respectively.Such electrocatalytic activity of Mo-Ni2 P@NiFe LDH/NF is comparable with that of majority reported non-precious metal catalysts and even precious catalysts(IrO2 and Pt/C).This work presents a new perspective strategy to fabricate ingeniously bifunctional electrocatalysts with well-designed structure and superior performance for clean energy conversion technologies or storage devices.展开更多
Zirconium(Zr)emerges as the most effective grain refiner for magnesium(Mg)alloys incorporating Zr.Typically,Zr is introduced in the form of an Mg–Zr master alloy.However,within Mg–Zr master alloys,Zr predominantly e...Zirconium(Zr)emerges as the most effective grain refiner for magnesium(Mg)alloys incorporating Zr.Typically,Zr is introduced in the form of an Mg–Zr master alloy.However,within Mg–Zr master alloys,Zr predominantly exists in a particle form,which tends to aggregate due to attractive van der Waals forces.The clustered Zr is prone to settling,thereby reducing its refining impact on Mg alloys.In this work,a combined pretreatment process for Mg–Zr master alloys was proposed,encompassing the introduction of a physical field to intervene the agglomeration of particle Zr and the employ of high-temperature dissolution and peritectic reactions to promote the solid solution of Zr.The results demonstrate that the particle Zr within the pretreated Mg–Zr master alloy is effectively dispersed and refined,and greater solute Zr levels can be achieved.The subsequent grain refinement ability was studied on a typical Mg–6Zn–0.6Zr(wt%)alloy.The outcome highlights that an improvement in the grain refinement efficacy(32.4%)of Mg–Zr master alloys was obtained with a holding time of 60 min.The pretreated Mg–Zr master alloy significantly augments the efficiency of grain refinement for Mg alloys through a synergistic strategy involving heterogeneous nucleation and solute-driven growth restriction.The crucial factor in achieving effective grain refinement of Zr in Mg alloys lies in regulating the presence and morphology of Zr in the Mg–Zr master alloy,distinguishing between particle Zr and solute Zr.This study introduces a novel method for developing more efficient Mg–Zr refiners.展开更多
Plant extracts are widely studied for their anti-cancer and cancer preventive effects. In this study, we compared the leukemia growth inhibition effects of seven different plant extracts, theaflavin, epigallocatechin ...Plant extracts are widely studied for their anti-cancer and cancer preventive effects. In this study, we compared the leukemia growth inhibition effects of seven different plant extracts, theaflavin, epigallocatechin gallate (EGCG), epicathechin (EC), apigenin, quercetin, chrysin and tannic acid, in vitro using the K562 erythroleukemia cell line and application of the design of experiments (DoE) methodology. Our systematic approach enabled us to isolate the main factor contribution, two-factor interactions and produced interaction relationships and/or models to describe growth inhibitory effects of different plant extracts when they are used in combination. The results identified tannic acid as the most significant inhibitor in this group and had synergistic effects with EGCG at specific concentrations. The fitted model of their combined effects showed that the most potent combination is at low concentrations of tannic acid (10 - 20 μM) and high concentrations of EGCG (80 - 100 μM). We further showed that tannic acid induced both growth inhibition and apoptosis in K562 cells in ranges between 10 - 100 μM. The polyphenol caused cell cycle arrest at G2- phase under the higher concentrations. In summary, use of DoE techniques effectively identified the most prominent inducer in this group of plant bioactive compounds and produced combinatorial bioactivity of various polyphenols and flavonoids over the entire range of concentrations under study. This study exemplifies the usefulness of DoE and serves as a guide in its utility for in vitro assessment of bioactivity in plant constituents.展开更多
BACKGROUND Insulin-like growth factor-1 receptor(IGF-1R)is over-expressed in hepatocellular carcinoma(HCC).However,the relationship between IGF-1R activation and HCC progression remains unidentified.AIM To investigate...BACKGROUND Insulin-like growth factor-1 receptor(IGF-1R)is over-expressed in hepatocellular carcinoma(HCC).However,the relationship between IGF-1R activation and HCC progression remains unidentified.AIM To investigate the effects of editing IGF-1R on the biological features of HCC cells.METHODS Immunohistochemistry analyzed the expressions of IGF-1R and P-glyco protein(P-gp)in HCC tissues and their distal non-cancerous tissues(non-Ca).IGF-1R was edited with Crispr/Cas9 system,screened specific sg RNAs,and then transfected into Hep G2 cells.CCK-8,scratch wound test detected cell proliferation,migration,invasion and transwell assays,respectively.Alterations of IGF-1R and P-gp were confirmed by Western blotting.Alterations of anti-cancer drug IC_(50)values were analyzed at the cell level.RESULTS The positive rates of IGF-1R(93.6%,χ~2=63.947)or P-gp(88.2%,χ~2=58.448)were significantly higher(P<0.001)in the HCC group than those(36.6%in IGF-1R or 26.9%in P-gp)in the non-Ca group.They were positively correlated between high IGF-1R and P-gp expression,and they were associated with hepatitis B virus infection and vascular invasion of HCC.Abnormal expressions of circulating IGF-1R and P-gp were confirmed and associated with HCC progression.Biological feature alterations of HCC cells transfected with specific sg RNA showed IGF-1R expression down-regulation,cell proliferation inhibition,cell invasion or migration potential decreasing,and enhancing susceptibility of Hep G2 cells to anti-cancer drugs.CONCLUSION Edited oncogenic IGF-1R was useful to inhibit biological behaviors of Hep G2 cells.展开更多
基金supported by National Key R&D Program(2022YFB2502000)Zhejiang Provincial Natural Science Foundation of China(LZ23B030003)+1 种基金the Fundamental Research Funds for the Central Universities(2021FZZX001-09)the National Natural Science Foundation of China(52175551).
文摘While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs.
基金the National Natural Science Foundation of China (31170597, 31200484)the National Fiveyear Science and Technology Research Project (2012BAD19B0801)+1 种基金the Fundamental Research Funds for the Central Universities (2572014AA30)the National Forestry Bureau ‘‘948’’ Project (2009-4-39) for financial support
文摘Korean spruce (Picea koraiensis Sieb. E1 Zucc.) is one of the main afforestation species in northern China. Seedling quality is a critical factor at planting time. To test whether the synergistic growth enhancement of Scotch pine (P. sylvestris var. mongolica) seedlings brought by the plant beneficial fungus Trichoderma virens (J.H. Mill., Giddens and A.A. Foster) Arx and ectomycorrhizal fungus (Suillus luteus (L.) Roussel.) can also benefit Korean spruce seed- lings, we examined the effects of S. luteus and T. virens on the growth of P. koraiensis seedlings and drought resistance of P. sylvestris var. mongolica in peat soils. The two fungi were added to sterilized peat soil in pots, and the plants were grown for 4 months. Seedling growth and physiological variables, including mycorrhizal colonization rate of roots, biomass, and chlorophyll content, were examined. The colonization rate of the mycorrhizal fungus on P. koraiensis exceeded 65 %, and the synergism between S. luteus and T. virens enhanced most of the variables for P. koraiensis seedlings after inoculation with S. luteus then 30 days later with T. virens as in our published results for seedlings of P. sylvestris var. mongolica. When seedlings of P. sylvestris var. mongolica were inoculated with this sequence, they became more drought tolerant. T. virens also induced S. luteus to produce -l,3-glucanase and chitinase. This inocu- lation sequence at planting can thus improve the quality of P. sylvestris var. mongolica and P. koraiensis seedlings and substantiates our previous results.
基金supported financially by the Key Research and Development Program of Shanxi(201803D421085)Shanxi Scholarship Council of China,Shanxi Graduate Education Innovation ProjectState key laboratory of physical chemistry of solid surface,Xiamen University(201912)。
文摘The in situ growth of nano-array on material structure is a novel and high-efficient strategy to design catalysts,however,it still remains a challenge to fabricate unique nano-architecture electrocatalyst with prominent activity and superior durability for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).Herein,a unique nano-architecture catalyst is successfully synthesized by using NiFe LDH nanosheets as framework to the in situ growth Mo-doped Ni2 P ultrafine nanosheets(marked as Mo-Ni2 P@NiFe LDH/NF).The unique 3 D core-shell nano-architecture is favorable for enhancing electron transfer/mass diffusion,providing abundant active sites,prompting O2/H2 gas release,and creating the synergistic effect between Mo-Ni2 P and NiFe LDH.Therefore,comparing with pure NiFe LDH/NF and MoNi2 P/NF electrodes,walnut-like Mo-Ni2 P@Ni Fe LDH/NF catalyst exhibits significantly improved electrocatalytic activities and durability towards OER(269 m V@40 m A cm^-2),HER(82 mV@10 mA cm^-2),and overall water splitting(1.46 V@10 m A cm^-2),respectively.Such electrocatalytic activity of Mo-Ni2 P@NiFe LDH/NF is comparable with that of majority reported non-precious metal catalysts and even precious catalysts(IrO2 and Pt/C).This work presents a new perspective strategy to fabricate ingeniously bifunctional electrocatalysts with well-designed structure and superior performance for clean energy conversion technologies or storage devices.
基金supported by the National Key Research and Development Program of China(No.2021YFB3501001)the National Natural Science Foundation of China(No.52061028)the Major Research and Development Projects of Jiangxi Province(No.20223BBE51021).
文摘Zirconium(Zr)emerges as the most effective grain refiner for magnesium(Mg)alloys incorporating Zr.Typically,Zr is introduced in the form of an Mg–Zr master alloy.However,within Mg–Zr master alloys,Zr predominantly exists in a particle form,which tends to aggregate due to attractive van der Waals forces.The clustered Zr is prone to settling,thereby reducing its refining impact on Mg alloys.In this work,a combined pretreatment process for Mg–Zr master alloys was proposed,encompassing the introduction of a physical field to intervene the agglomeration of particle Zr and the employ of high-temperature dissolution and peritectic reactions to promote the solid solution of Zr.The results demonstrate that the particle Zr within the pretreated Mg–Zr master alloy is effectively dispersed and refined,and greater solute Zr levels can be achieved.The subsequent grain refinement ability was studied on a typical Mg–6Zn–0.6Zr(wt%)alloy.The outcome highlights that an improvement in the grain refinement efficacy(32.4%)of Mg–Zr master alloys was obtained with a holding time of 60 min.The pretreated Mg–Zr master alloy significantly augments the efficiency of grain refinement for Mg alloys through a synergistic strategy involving heterogeneous nucleation and solute-driven growth restriction.The crucial factor in achieving effective grain refinement of Zr in Mg alloys lies in regulating the presence and morphology of Zr in the Mg–Zr master alloy,distinguishing between particle Zr and solute Zr.This study introduces a novel method for developing more efficient Mg–Zr refiners.
文摘Plant extracts are widely studied for their anti-cancer and cancer preventive effects. In this study, we compared the leukemia growth inhibition effects of seven different plant extracts, theaflavin, epigallocatechin gallate (EGCG), epicathechin (EC), apigenin, quercetin, chrysin and tannic acid, in vitro using the K562 erythroleukemia cell line and application of the design of experiments (DoE) methodology. Our systematic approach enabled us to isolate the main factor contribution, two-factor interactions and produced interaction relationships and/or models to describe growth inhibitory effects of different plant extracts when they are used in combination. The results identified tannic acid as the most significant inhibitor in this group and had synergistic effects with EGCG at specific concentrations. The fitted model of their combined effects showed that the most potent combination is at low concentrations of tannic acid (10 - 20 μM) and high concentrations of EGCG (80 - 100 μM). We further showed that tannic acid induced both growth inhibition and apoptosis in K562 cells in ranges between 10 - 100 μM. The polyphenol caused cell cycle arrest at G2- phase under the higher concentrations. In summary, use of DoE techniques effectively identified the most prominent inducer in this group of plant bioactive compounds and produced combinatorial bioactivity of various polyphenols and flavonoids over the entire range of concentrations under study. This study exemplifies the usefulness of DoE and serves as a guide in its utility for in vitro assessment of bioactivity in plant constituents.
基金Supported by Projects of the National Natural Science Foundation of China,No.81873915,No.31872738 and No.81673241Key Plan of Nantong S&T Development,No.MS12020021Program of Medical School S&T of Nantong University,No.2018YFC0116902。
文摘BACKGROUND Insulin-like growth factor-1 receptor(IGF-1R)is over-expressed in hepatocellular carcinoma(HCC).However,the relationship between IGF-1R activation and HCC progression remains unidentified.AIM To investigate the effects of editing IGF-1R on the biological features of HCC cells.METHODS Immunohistochemistry analyzed the expressions of IGF-1R and P-glyco protein(P-gp)in HCC tissues and their distal non-cancerous tissues(non-Ca).IGF-1R was edited with Crispr/Cas9 system,screened specific sg RNAs,and then transfected into Hep G2 cells.CCK-8,scratch wound test detected cell proliferation,migration,invasion and transwell assays,respectively.Alterations of IGF-1R and P-gp were confirmed by Western blotting.Alterations of anti-cancer drug IC_(50)values were analyzed at the cell level.RESULTS The positive rates of IGF-1R(93.6%,χ~2=63.947)or P-gp(88.2%,χ~2=58.448)were significantly higher(P<0.001)in the HCC group than those(36.6%in IGF-1R or 26.9%in P-gp)in the non-Ca group.They were positively correlated between high IGF-1R and P-gp expression,and they were associated with hepatitis B virus infection and vascular invasion of HCC.Abnormal expressions of circulating IGF-1R and P-gp were confirmed and associated with HCC progression.Biological feature alterations of HCC cells transfected with specific sg RNA showed IGF-1R expression down-regulation,cell proliferation inhibition,cell invasion or migration potential decreasing,and enhancing susceptibility of Hep G2 cells to anti-cancer drugs.CONCLUSION Edited oncogenic IGF-1R was useful to inhibit biological behaviors of Hep G2 cells.