In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl...In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.展开更多
Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organ...Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organophilic montmorillonite (OMMT) in OCFM is widened and an exfoliated structure may be formed. Thermal-oxidative aging behavior of OCFM and SBS modified bitumen crack filling material (SCFM) was investigated. The experimental results indicate that the rate of thermal-oxidative aging of OCFM is much slower than that of SCFM, which can be attributed to barrier of exfoliated structure of OCFM to oxygen.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-tr...An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.展开更多
The thermal conductivities of different typical species filling materials for sliding gate systems for steel ladles were measured using a hot wire technique, and the relationships between thermal conductivity and te...The thermal conductivities of different typical species filling materials for sliding gate systems for steel ladles were measured using a hot wire technique, and the relationships between thermal conductivity and temperature were regressed. The factors affecting thermal conductivity were analyzed by using variance analysis for a perpendicular experiment. The effects of thermal conductivity on sliding gate free tapping were studied, and it was revealed that decreasing the thermal conductivity of the filling materials is beneficial in enhancing the rate of free tapping for sliding gates.展开更多
To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious materia...To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area.展开更多
Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negati...Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.展开更多
A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compou...A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.展开更多
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ...In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.展开更多
Reactive material projectiles can be an extremely efficient lethality enhancement technology that incorporates the defeat mechanisms of chemical energy and kinetic energy.This paper presents such a research on the enh...Reactive material projectiles can be an extremely efficient lethality enhancement technology that incorporates the defeat mechanisms of chemical energy and kinetic energy.This paper presents such a research on the enhanced ignition behavior of reactive material projectiles impacting a fuel-filled tank.Firstly,the ignition process description of the fuel-filled tank impacted by inert metal and reactive material projectiles is presented.Secondly,ballistic impact experiments are performed to investigate the ignition effects of the fuel-filled tank impacted by reactive material versus tungsten alloy projectiles with mass matched.The fuel tank used for the experiments is a cylindrical steel casing structure filled with aviation kerosene and sealed with aluminum cover plates on both ends using screw bolts.The experimental results indicate that,compared with impacts from tungsten alloy projectiles,there is dramatically enhanced structural damage to the fuel-filled tank and an enhanced ignition effect caused by reactive material projectile impacts.Finally,an analytical model is developed,by which the effects of the aluminum cover plate thickness on critical structural failure energy of the fuel-filled tank and the total energy of the reactive material projectile deposited into the fuel-filled tank are discussed.The analysis shows a good agreement with the experiments.展开更多
The experiments, which include the complete stress-strain curves, triaxial compressive loading history and the main factors affecting the compressive strength of the material, were made to research the mechanical prop...The experiments, which include the complete stress-strain curves, triaxial compressive loading history and the main factors affecting the compressive strength of the material, were made to research the mechanical properties of paste-like fill material. The results show that the material still has a relatively high load-bearing capacity after yielding. From the view of the backfill strength, the suitable content of the fine particles in the aggregates is 20%, the curing temperature of backfill slurry is about 20 centigrade degrees or higher. The backfill strength can reach 2.5-3.6 MPa when the binder dosage is 5%-8%. It can meet the needs for mining with backfill.展开更多
Most of the previous research on concrete-filled steel tube is restricted to a deterministic approach. To gain clear insight into the random properties of circular concrete-filled steel tube, reliability analysis is c...Most of the previous research on concrete-filled steel tube is restricted to a deterministic approach. To gain clear insight into the random properties of circular concrete-filled steel tube, reliability analysis is carried out in the present study. To obtain the Structural nonlinear response and ultimate resistance capacity, material and geometrical nonlinear analysis of circular concrete-filled steel tube is performed with a three-dimensional degenerated beam ele- ment. Then we investigate the reliability of concrete-filled steel tube using the first-order reliability method combined with nonlinear finite element analysis. The influences of such parameters as material strength, slenderness, initial geo- metrical imperfection, etc. on the reliability of circular concrete-filled steel tube column are studied. It can be con- cluded that inevitable random fluctuation of those parameters has significant influence on structural reliability, and that stochastic or reliability methods can provide a more rational and subjective evaluation on the safety of CFT structures than a deterministic approach.展开更多
To recover coal resources that have been damaged by traditional mining methods and ensure stability of the lower roadway in a small pit goaf,the goaf area must be filled and reinforced.In this research,the 1202 workin...To recover coal resources that have been damaged by traditional mining methods and ensure stability of the lower roadway in a small pit goaf,the goaf area must be filled and reinforced.In this research,the 1202 working face of the Hanzui mine is considered as an example for classifying the roof of the mining tunnel under the small kiln destruction zone,the effect of the goaf on the roadway is determined based on the radio tunnel penetration method,a mechanical model to determine the roof filling control mechanism was established,and the duct foaming system and roof filling process were designed.The results show that the scope and degree of influence of the goaf on the mining lane are large,but safe tunneling can be ensured through the use of a steel shed and advanced grouting techniques.When the roof conditions are not similar,materials with different filling heights and filling strengths can be used to control the roof filling of the roadway.By combining field experience and laboratory tests,it was determined that a high-foaming material with a water-cement ratio of 1:0.6,a suitable high-foaming additive,and a water volume ratio of 1:30 is cost-efficient for filling and meets the filling strength requirements.Finally,the reliability of the proposed technology was verified by field experiments,which provide a reference for filling operations in similar mines.展开更多
A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as ...A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.展开更多
High temperatures of the asphalt concrete pavements in summer contribute to the heat island phenomenon in the urban areas. The effective cool-pavement technologies are sought to mitigate the pavement environment. In t...High temperatures of the asphalt concrete pavements in summer contribute to the heat island phenomenon in the urban areas. The effective cool-pavement technologies are sought to mitigate the pavement environment. In this paper, developed heat-reflective pavements are constructed from open-graded asphalt concrete, in which voids in the upper part of the pavement are filled with a cement mortar, containing recycled materials as a fine aggregate. The recycled materials used in this study are: crushed oyster shells, roof tile debris, pottery debris, glass cullet, crushed escallops and coral sand. The temperature reduction of the pavement surfaces at an open site is measured in the summer. The results show that the maximum surface temperature of the pavements falls by approximately 8-10 ℃ compared to the asphalt concrete pavement. Furthermore, it is found that the temperature reduction is mainly due to the increased solar radiation reflectance of the pavement surface.展开更多
The aim of the present study was to compare sealing abilities of Resilon/Epiphany (R/E) with those of guttapercha and Kerr Pulp Canal Sealer EWT (GP/PCS). 50 single rooted teeth were randomly divided into 2 groups (n ...The aim of the present study was to compare sealing abilities of Resilon/Epiphany (R/E) with those of guttapercha and Kerr Pulp Canal Sealer EWT (GP/PCS). 50 single rooted teeth were randomly divided into 2 groups (n = 22) (R/E;GP/PCS), and 2 control groups (n = 3) (Positive, Negative). Fluid flow rate through the filled roots was measured using a fluid filtration device. The same specimens were immersed in a 2% Methylen Blue Solution. Roots were embedded in clear epoxy resin and cross sectionet at 1 mm intervals along the length of the root. Circumferential dye penetration was evaluated at 40× magnification. Fluid filtration of teeth obturated with the R/E system (0.085 [0.057, 0.113] μL·min-1), and dye penetration test showed no statistically significant difference compared to those obturated with GP/PCS (0.113 [0.057, 0.141] μL·min-1). Within the limits of the present study, there is no statistically significant difference between R/E and GP/PCS sealing abilities.展开更多
The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposite...The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.展开更多
基金supported by the National Natural Science Foundation of China (No. 50490270, 50774077, 50574089, 50490273)the New Century Excellent Personnel Training Program of the Ministry of Education of China (No. NCET-06-0475)+1 种基金the Special Funds of Universities outstanding doctoral dissertation (No. 200760) the Basic Research Program of China (No. 2006CB202204-3)
文摘In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.
基金Funded by the National Natural Science Foundation of China (50773061)
文摘Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organophilic montmorillonite (OMMT) in OCFM is widened and an exfoliated structure may be formed. Thermal-oxidative aging behavior of OCFM and SBS modified bitumen crack filling material (SCFM) was investigated. The experimental results indicate that the rate of thermal-oxidative aging of OCFM is much slower than that of SCFM, which can be attributed to barrier of exfoliated structure of OCFM to oxygen.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
文摘An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.
文摘The thermal conductivities of different typical species filling materials for sliding gate systems for steel ladles were measured using a hot wire technique, and the relationships between thermal conductivity and temperature were regressed. The factors affecting thermal conductivity were analyzed by using variance analysis for a perpendicular experiment. The effects of thermal conductivity on sliding gate free tapping were studied, and it was revealed that decreasing the thermal conductivity of the filling materials is beneficial in enhancing the rate of free tapping for sliding gates.
基金Funded by the National Natural Science Foundation of China(No.51574055)the Natural Science Foundation of Liaoning Province(No.20170540143)
文摘To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area.
文摘Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.
文摘A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.
文摘In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.
基金funded under the National Innovation and Exploration Research Programsupported by the State Key Laboratory of Explosion Science and Technology Foundation of China
文摘Reactive material projectiles can be an extremely efficient lethality enhancement technology that incorporates the defeat mechanisms of chemical energy and kinetic energy.This paper presents such a research on the enhanced ignition behavior of reactive material projectiles impacting a fuel-filled tank.Firstly,the ignition process description of the fuel-filled tank impacted by inert metal and reactive material projectiles is presented.Secondly,ballistic impact experiments are performed to investigate the ignition effects of the fuel-filled tank impacted by reactive material versus tungsten alloy projectiles with mass matched.The fuel tank used for the experiments is a cylindrical steel casing structure filled with aviation kerosene and sealed with aluminum cover plates on both ends using screw bolts.The experimental results indicate that,compared with impacts from tungsten alloy projectiles,there is dramatically enhanced structural damage to the fuel-filled tank and an enhanced ignition effect caused by reactive material projectile impacts.Finally,an analytical model is developed,by which the effects of the aluminum cover plate thickness on critical structural failure energy of the fuel-filled tank and the total energy of the reactive material projectile deposited into the fuel-filled tank are discussed.The analysis shows a good agreement with the experiments.
文摘The experiments, which include the complete stress-strain curves, triaxial compressive loading history and the main factors affecting the compressive strength of the material, were made to research the mechanical properties of paste-like fill material. The results show that the material still has a relatively high load-bearing capacity after yielding. From the view of the backfill strength, the suitable content of the fine particles in the aggregates is 20%, the curing temperature of backfill slurry is about 20 centigrade degrees or higher. The backfill strength can reach 2.5-3.6 MPa when the binder dosage is 5%-8%. It can meet the needs for mining with backfill.
基金supported by the Fundamental Research Funds for the Central Universities (SWJTU09CX012 and SWJTU11BR006)the Doctoral Fund for Youth Scholars of Ministry of Educationof China (No. 20110184120010)
文摘Most of the previous research on concrete-filled steel tube is restricted to a deterministic approach. To gain clear insight into the random properties of circular concrete-filled steel tube, reliability analysis is carried out in the present study. To obtain the Structural nonlinear response and ultimate resistance capacity, material and geometrical nonlinear analysis of circular concrete-filled steel tube is performed with a three-dimensional degenerated beam ele- ment. Then we investigate the reliability of concrete-filled steel tube using the first-order reliability method combined with nonlinear finite element analysis. The influences of such parameters as material strength, slenderness, initial geo- metrical imperfection, etc. on the reliability of circular concrete-filled steel tube column are studied. It can be con- cluded that inevitable random fluctuation of those parameters has significant influence on structural reliability, and that stochastic or reliability methods can provide a more rational and subjective evaluation on the safety of CFT structures than a deterministic approach.
基金the National Key Basic Research Program of China (No. 2015CB251600)the National Natural Science Foundation of China (Nos. 51474206 and 51774268)the Jiangsu Basic Research Program (No. BK20150051)
文摘To recover coal resources that have been damaged by traditional mining methods and ensure stability of the lower roadway in a small pit goaf,the goaf area must be filled and reinforced.In this research,the 1202 working face of the Hanzui mine is considered as an example for classifying the roof of the mining tunnel under the small kiln destruction zone,the effect of the goaf on the roadway is determined based on the radio tunnel penetration method,a mechanical model to determine the roof filling control mechanism was established,and the duct foaming system and roof filling process were designed.The results show that the scope and degree of influence of the goaf on the mining lane are large,but safe tunneling can be ensured through the use of a steel shed and advanced grouting techniques.When the roof conditions are not similar,materials with different filling heights and filling strengths can be used to control the roof filling of the roadway.By combining field experience and laboratory tests,it was determined that a high-foaming material with a water-cement ratio of 1:0.6,a suitable high-foaming additive,and a water volume ratio of 1:30 is cost-efficient for filling and meets the filling strength requirements.Finally,the reliability of the proposed technology was verified by field experiments,which provide a reference for filling operations in similar mines.
文摘A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.
文摘High temperatures of the asphalt concrete pavements in summer contribute to the heat island phenomenon in the urban areas. The effective cool-pavement technologies are sought to mitigate the pavement environment. In this paper, developed heat-reflective pavements are constructed from open-graded asphalt concrete, in which voids in the upper part of the pavement are filled with a cement mortar, containing recycled materials as a fine aggregate. The recycled materials used in this study are: crushed oyster shells, roof tile debris, pottery debris, glass cullet, crushed escallops and coral sand. The temperature reduction of the pavement surfaces at an open site is measured in the summer. The results show that the maximum surface temperature of the pavements falls by approximately 8-10 ℃ compared to the asphalt concrete pavement. Furthermore, it is found that the temperature reduction is mainly due to the increased solar radiation reflectance of the pavement surface.
文摘The aim of the present study was to compare sealing abilities of Resilon/Epiphany (R/E) with those of guttapercha and Kerr Pulp Canal Sealer EWT (GP/PCS). 50 single rooted teeth were randomly divided into 2 groups (n = 22) (R/E;GP/PCS), and 2 control groups (n = 3) (Positive, Negative). Fluid flow rate through the filled roots was measured using a fluid filtration device. The same specimens were immersed in a 2% Methylen Blue Solution. Roots were embedded in clear epoxy resin and cross sectionet at 1 mm intervals along the length of the root. Circumferential dye penetration was evaluated at 40× magnification. Fluid filtration of teeth obturated with the R/E system (0.085 [0.057, 0.113] μL·min-1), and dye penetration test showed no statistically significant difference compared to those obturated with GP/PCS (0.113 [0.057, 0.141] μL·min-1). Within the limits of the present study, there is no statistically significant difference between R/E and GP/PCS sealing abilities.
基金Supported by the National Natural Science Foundation of China(Nos.20704004, 21074019)the Natural Science Foundation of Jilin Province, China(No.20101539)
文摘The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.