The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount ...The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.展开更多
The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electr...The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.展开更多
We propose a nondestructive method to characterize the quantitative bonding strength at a bonded solid-solid interface by a contact acoustic nonlinearity(CAN)microscope.The principle of the CAN microscope is briefly d...We propose a nondestructive method to characterize the quantitative bonding strength at a bonded solid-solid interface by a contact acoustic nonlinearity(CAN)microscope.The principle of the CAN microscope is briefly described.The vibration amplitude of the incident focusing wave at the bonded interface is calculated,the standard bonding strength with a complete bonding state is established by the tension test,and the CAN parameter is calibrated.The quantitative contour of bonding strength at the interface could be obtained.The experimental contours of two samples are also presented.展开更多
The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ...The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.展开更多
AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th...AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.展开更多
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab...In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.展开更多
Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studie...Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studied by optical and scanning electron microscope and energy dispersive X ray analysis, and the effects of the thickness of the intermetallic layers and the Si content in hot dip aluminized layers on the interfacial bonding strength were also investigated respectively. It is found that the hot dipped steel and Al Pb alloy are bonded through blank interface bonding and block interface bonding, and the total bonding strength mainly depends on that of blank interfaces and the fraction of blank interfaces. There is a linear relationship between the total bonding strength F and the fraction of blank interfaces K b. The bonding strength varies with the Si content in the hot dipped aluminized layers on the surface of steel sheets, the fraction of blank interfaces and the rotation of the intermetallic blocks. [展开更多
In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , ...In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , scanning electron microscope (SEM) and electron probe microanalysis ( EPMA ). It is found that the welding interfaces are wavy due to the wavy explosive loading. There are three kinds of bonding interfaces i. e. big wave, small wave and micro wave. There are a few seam defects and all elements contents are less than both of the base and .flyer plate in the transition zone of big wavy interface. Moreover, some "holes" result in the lowest bonding strength of big wavy interface nearby the interface in the base plate. All elements contents of the small wavy interface are between two metals, and there are few seam and hole defects, so it is the higher for the bonding strength of small wavy interface. There is no transition zone and defects in the micro wavy interface, so the interface is the best. To gain the high quality small and micro wavy bonding interface the explosive charge should be controlled.展开更多
A novel test method of measuring the interface bond strength between a thermal sprayed coating and substrate is put forward first in this paper. The test method is simple and reliable, and exists no any inherent short...A novel test method of measuring the interface bond strength between a thermal sprayed coating and substrate is put forward first in this paper. The test method is simple and reliable, and exists no any inherent shortcoming and controversy. The interface bond strength obtained by the test method is completely the inherent property of the interface and depends only on coating material properties, spray conditions, and technique of depositing the coating. By extensive tests, it is shown that the test tesults are very tepeatable and reliable. Furthermore, from this test, the critical coating thickness under which the coating spall can not emerge is also obtained.展开更多
The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfa...The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfacial bonding strength. The bonding strength of metals in cold pressure welding such as Ag Ni (they are hardly mutual soluble) and Ag Cu(they are limited soluble) are discussed in this paper. The results of the tensile test suggest that two kinds of welded joints have enough strength to satisfy with the demand for being used. Moreover, thermodynamics, crystal logy, physics and metal electronic microscopic analysis etc are adopted to further calculate the bonding strength. The results of test and theoretical analyses prove that Ag Ni, Ag Cu, especially, for Ag Ni can form strong welded joint which is higher than that of the relative soft base metals in cold pressure welding.展开更多
In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets...In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%.展开更多
Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformatio...Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.展开更多
The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic tes...The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.展开更多
The objective of this experimental study is to improve the cementing bond quality of sandstone oil-gas well along the wellbore cement-formation interface(WCFI),so as to ensure long-term zonal isolation throughout the ...The objective of this experimental study is to improve the cementing bond quality of sandstone oil-gas well along the wellbore cement-formation interface(WCFI),so as to ensure long-term zonal isolation throughout the lifecycle of the well by using NsO solution as filtercake modifier which was developed in the laboratory.According to designed experimental method and API RP 10,the effectiveness of filtercake modifier(NSO)on the bonding strength at the WCFI was assessed by using designed simulated wellbore as sandstone formation.The experimental results indicated that the samples which were treated with NsO solution had higher bond strength over untreated samples.The strength generally increased with curing period as for treated samples,0.198,0.374,0.433 and 0.473 MPa for 3,7,15,and 30 days respectively while for the untreated samples the bond strength were 0.050,0.070,0.81 and 0.100 MPa for the same period.The water-based filtercake modification techniques had significantly enhanced the bonding strength of WCFI by increasing rates above 296%.Improvement of bond strength to the treated sample was due to filtercake modification as a result of formation of cementitious material as revealed in FTIR spectral such as Calcium-Silicate-Hydrate(C-S-H)and other geopolymers like Calcium-Aluminium-Silicate-Hydrate(C-A-S-H)and Sodium-Aluminium-Silicate-Hydrate(N-A-S-H)along the interface which filled the existed pores hence reducing porosity hence high strength of bond.The low transmittance value for the NsO treated samples revealed that there were more cementitious materials existing at the WCFI which led to improvement of bonding strength as compared to the untreated samples.The lower/poor bond strength for the untreated samples is due to existence of untreated,thick water-based filtercake films at WCFI,which prevented the complete hydration process between rock grains and cement slurry components to make chemical binder of cement slurry material and formation.2022 The Authors.Publishing services provided by Elsevier B.V.on behalf of KeAi Communication Co.Ltd.This is an open access article under the cc BY license(http://creativecommons.org/licenses/by/4.o/).展开更多
The shear bond of interface between concrete and basalt fiber reinforced polymer(BFRP)bars during freeze–thaw(F–T)cycles is crucial for the application of BFRP bar-reinforced concrete structures in cold regions.In t...The shear bond of interface between concrete and basalt fiber reinforced polymer(BFRP)bars during freeze–thaw(F–T)cycles is crucial for the application of BFRP bar-reinforced concrete structures in cold regions.In this study,48 groups of pull-out specimens were designed to test the shear bond of the BFRP-concrete interface subjected to F–T cycles.The effects of concrete strength,diameter,and embedment length of BFRP rebar were investigated under numerous F–T cycles.Test results showed that a larger diameter or longer embedment length of BFRP rebar resulted in lower interfacial shear bond behavior,such as interfacial bond strength,initial stiffness,and energy absorption,after the interface goes through F–T cycles.However,higher concrete strength and fewer F–T cycles were beneficial for enhancing the interfacial bond behavior.Subsequently,a three-dimensional(3D)interfacial model based on the finite element method was developed,and the interfacial bond behavior of the specimens was analyzed in-depth.Finally,a degradation bond strength subjected to F–T cycles was predicted by a proposed mechanical model.The predictions were fully consistent with the tested results.The model demonstrated accuracy in describing the shear bond behavior of the interface under numerous F–T cycles.展开更多
3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ...3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples.展开更多
In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding ...In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding processes.The melting points of magnesium(Mg)and copper(Cu)have a significant difference(nearly 400℃)and this may lead to a large difference in the microstructure and joint performance of Mg-Cu joints.However,diffusion bonding can be used to join these alloys without much difficulty.This work analyses the effect of parameters on diffusion layer thickness,hardness and strength of magnesium-copper dissimilar joints.The experiments were conducted using three-factor,five-level,central composite rotatable design matrix.Empirical relationships were developed to predict diffusion layer thickness,hardness and strength using response surface methodology.It is found that bonding temperature has predominant effect on bond characteristics.Joints fabricated at a bonding temperature of 450℃, bonding pressure of 12 MPa and bonding time of 30 min exhibited maximum shear strength and bonding strength of 66 and 81 MPa, respectively.展开更多
The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc ...The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc doped inθ′slab(S2 site))were modeled based on calculated results and reported experiments.Through the analysis of interfacial bonding strength,it is revealed that the doping of Sc at S1 site can significantly decrease the interface energy and increase the work of adhesion.In particular,the doped coherent interface with Sc at S1 site which is occupied by interstitial Cu atoms has very good bonding strength.The electronic structure shows the strong Al—Cu bonds at the interfaces with Sc at S1 site,and the Al—Al bonds at the interfaces with Sc at S2 site are formed.The formation of strong Al—Cu and Al—Al bonds plays an important role in the enhancement of doped interface strength.展开更多
Diffusion bonding of as-cast Mg−6Gd−3Y magnesium alloy was carried out at temperatures of 400−480℃ with bonding pressure of 6 MPa for 90 min.Diffusion bonded joints were solution treated at 495℃ for 14 h and then ag...Diffusion bonding of as-cast Mg−6Gd−3Y magnesium alloy was carried out at temperatures of 400−480℃ with bonding pressure of 6 MPa for 90 min.Diffusion bonded joints were solution treated at 495℃ for 14 h and then aged at 200℃ for 30 h.Microstructures and mechanical properties of joints were analyzed.The results showed that rare earth elements and their compounds gathering at bonding interface hindered the grain boundary migration crossing bonding interface.Tensile strength of as-bonded and as-solution treated joints increased firstly and then decreased with the bonding temperature increasing due to the combined effects of grain coarsening and solid-solution strengthening.As-bonded and solution-treated joints fractured at matrix except the joint bonded at 400℃,while aged joints fractured at bonding interface.The highest ultimate tensile strength of 279 MPa with elongation of 2.8%was found in joint bonded at 440℃ with solution treatment followed by aging treatment.展开更多
Influence of fabric geometrical parameters,including the number of filling yarns per 10 cm,yarn twist and fiber type,on bonding of the fabric reinforced cement composites is studied by fabric pull-out test and SEM mic...Influence of fabric geometrical parameters,including the number of filling yarns per 10 cm,yarn twist and fiber type,on bonding of the fabric reinforced cement composites is studied by fabric pull-out test and SEM microstructure analysis.The results show that the bonding strength increase with the increase of the number of filling yarns per 10 cm in the range of this study.But the influence of fabric count on the interfacial bonding is dual and there is a critical value.The twist of yarns has a little effect on the bonding strength and interfacial bonding behaves of nylon fabric reinforced cement composites.There is an optimum twist range.Within this range,the bonding strength increase slowly with the increase of yarn twist.Beyond this range,it is versus.The bonding strength is strongly affected by the fabric character.The bonding between the nylon fiber fabric and cement is good;that of between glass fiber fabric and cement is moderate and that of between the carbon fiber fabric and cement is poor.展开更多
基金Project(51275416)supported by the National Natural Science Foundation of China
文摘The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.
文摘The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.
基金by the National Natural Science Foundation of China under Grant No 10874084.
文摘We propose a nondestructive method to characterize the quantitative bonding strength at a bonded solid-solid interface by a contact acoustic nonlinearity(CAN)microscope.The principle of the CAN microscope is briefly described.The vibration amplitude of the incident focusing wave at the bonded interface is calculated,the standard bonding strength with a complete bonding state is established by the tension test,and the CAN parameter is calibrated.The quantitative contour of bonding strength at the interface could be obtained.The experimental contours of two samples are also presented.
基金Project(2014M562447) supported by the China Postdoctoral Science FoundationProject(51275416) supported by the National Natural Science Foundation of China+1 种基金Project(BP201503) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)China
文摘The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.
基金Project(2012CB723307)supported by the National Basic Research Program of ChinaProject(51204046)supported by the National Natural Science Foundation of ChinaProject(20130042130001)supported by the Doctoral Fund of Ministry of Education of China
文摘AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.
基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(50874100)supported by the National Natural Science Foundation of China
文摘In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
文摘Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studied by optical and scanning electron microscope and energy dispersive X ray analysis, and the effects of the thickness of the intermetallic layers and the Si content in hot dip aluminized layers on the interfacial bonding strength were also investigated respectively. It is found that the hot dipped steel and Al Pb alloy are bonded through blank interface bonding and block interface bonding, and the total bonding strength mainly depends on that of blank interfaces and the fraction of blank interfaces. There is a linear relationship between the total bonding strength F and the fraction of blank interfaces K b. The bonding strength varies with the Si content in the hot dipped aluminized layers on the surface of steel sheets, the fraction of blank interfaces and the rotation of the intermetallic blocks. [
文摘In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , scanning electron microscope (SEM) and electron probe microanalysis ( EPMA ). It is found that the welding interfaces are wavy due to the wavy explosive loading. There are three kinds of bonding interfaces i. e. big wave, small wave and micro wave. There are a few seam defects and all elements contents are less than both of the base and .flyer plate in the transition zone of big wavy interface. Moreover, some "holes" result in the lowest bonding strength of big wavy interface nearby the interface in the base plate. All elements contents of the small wavy interface are between two metals, and there are few seam and hole defects, so it is the higher for the bonding strength of small wavy interface. There is no transition zone and defects in the micro wavy interface, so the interface is the best. To gain the high quality small and micro wavy bonding interface the explosive charge should be controlled.
文摘A novel test method of measuring the interface bond strength between a thermal sprayed coating and substrate is put forward first in this paper. The test method is simple and reliable, and exists no any inherent shortcoming and controversy. The interface bond strength obtained by the test method is completely the inherent property of the interface and depends only on coating material properties, spray conditions, and technique of depositing the coating. By extensive tests, it is shown that the test tesults are very tepeatable and reliable. Furthermore, from this test, the critical coating thickness under which the coating spall can not emerge is also obtained.
文摘The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfacial bonding strength. The bonding strength of metals in cold pressure welding such as Ag Ni (they are hardly mutual soluble) and Ag Cu(they are limited soluble) are discussed in this paper. The results of the tensile test suggest that two kinds of welded joints have enough strength to satisfy with the demand for being used. Moreover, thermodynamics, crystal logy, physics and metal electronic microscopic analysis etc are adopted to further calculate the bonding strength. The results of test and theoretical analyses prove that Ag Ni, Ag Cu, especially, for Ag Ni can form strong welded joint which is higher than that of the relative soft base metals in cold pressure welding.
基金supported by the National Natural Science Foundation of China Key Projects of International Cooperation and Exchanges(No.42020104006)the National Natural Science Foundation of China(No.41630643)+1 种基金the Fundamental Research Funds for the Central Universities(No.CUGCJ1701)the Scientific Research Project of China Three Gorges Corporation LTD.
文摘In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%.
基金Project (51474189) supported by the National Natural Science Foundation of ChinaProject (E2018203446) supported by the Excellent Youth Foundation of Hebei Scientific Committee,ChinaProject (QN2015214) supported by the Educational Commission of Hebei Province,China
文摘Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.
文摘The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.
文摘The objective of this experimental study is to improve the cementing bond quality of sandstone oil-gas well along the wellbore cement-formation interface(WCFI),so as to ensure long-term zonal isolation throughout the lifecycle of the well by using NsO solution as filtercake modifier which was developed in the laboratory.According to designed experimental method and API RP 10,the effectiveness of filtercake modifier(NSO)on the bonding strength at the WCFI was assessed by using designed simulated wellbore as sandstone formation.The experimental results indicated that the samples which were treated with NsO solution had higher bond strength over untreated samples.The strength generally increased with curing period as for treated samples,0.198,0.374,0.433 and 0.473 MPa for 3,7,15,and 30 days respectively while for the untreated samples the bond strength were 0.050,0.070,0.81 and 0.100 MPa for the same period.The water-based filtercake modification techniques had significantly enhanced the bonding strength of WCFI by increasing rates above 296%.Improvement of bond strength to the treated sample was due to filtercake modification as a result of formation of cementitious material as revealed in FTIR spectral such as Calcium-Silicate-Hydrate(C-S-H)and other geopolymers like Calcium-Aluminium-Silicate-Hydrate(C-A-S-H)and Sodium-Aluminium-Silicate-Hydrate(N-A-S-H)along the interface which filled the existed pores hence reducing porosity hence high strength of bond.The low transmittance value for the NsO treated samples revealed that there were more cementitious materials existing at the WCFI which led to improvement of bonding strength as compared to the untreated samples.The lower/poor bond strength for the untreated samples is due to existence of untreated,thick water-based filtercake films at WCFI,which prevented the complete hydration process between rock grains and cement slurry components to make chemical binder of cement slurry material and formation.2022 The Authors.Publishing services provided by Elsevier B.V.on behalf of KeAi Communication Co.Ltd.This is an open access article under the cc BY license(http://creativecommons.org/licenses/by/4.o/).
基金The authors acknowledge the financial support from the Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education of China(No.2019KF-4)the National Key Research Program of China(No.2021YFC1909901).
文摘The shear bond of interface between concrete and basalt fiber reinforced polymer(BFRP)bars during freeze–thaw(F–T)cycles is crucial for the application of BFRP bar-reinforced concrete structures in cold regions.In this study,48 groups of pull-out specimens were designed to test the shear bond of the BFRP-concrete interface subjected to F–T cycles.The effects of concrete strength,diameter,and embedment length of BFRP rebar were investigated under numerous F–T cycles.Test results showed that a larger diameter or longer embedment length of BFRP rebar resulted in lower interfacial shear bond behavior,such as interfacial bond strength,initial stiffness,and energy absorption,after the interface goes through F–T cycles.However,higher concrete strength and fewer F–T cycles were beneficial for enhancing the interfacial bond behavior.Subsequently,a three-dimensional(3D)interfacial model based on the finite element method was developed,and the interfacial bond behavior of the specimens was analyzed in-depth.Finally,a degradation bond strength subjected to F–T cycles was predicted by a proposed mechanical model.The predictions were fully consistent with the tested results.The model demonstrated accuracy in describing the shear bond behavior of the interface under numerous F–T cycles.
基金Financial support by the Ministry of Science and Technology of China(No.2021YFE0114100)by the Federal Ministry of Education,Science and Research(BMBWF)of Austria(No.CN11/2021)+5 种基金jointly provided for the project‘Intense Upgrades of the New Austrian Tunnelling Method(NATM)and Demonstration of its Applicability to High-Quality Urban Development’,is gratefully acknowledgedsupported by the Science and Technology Commission of Shanghai Municipality(No.21DZ1203505)the National Natural Science Foundation of China(Grant Nos.51908424 and U1934210)Shanghai Rising-Star Program(No.22QB1405000)Jiangxi Province Department of Transportation Key Engineering Project(No.2021C0008)the financial support provided by the Chinese Scholarship Council(CSC,No.202006260198).
文摘3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples.
基金support rendered through a Major Research Project No. F-31-51/2005(SR)
文摘In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding processes.The melting points of magnesium(Mg)and copper(Cu)have a significant difference(nearly 400℃)and this may lead to a large difference in the microstructure and joint performance of Mg-Cu joints.However,diffusion bonding can be used to join these alloys without much difficulty.This work analyses the effect of parameters on diffusion layer thickness,hardness and strength of magnesium-copper dissimilar joints.The experiments were conducted using three-factor,five-level,central composite rotatable design matrix.Empirical relationships were developed to predict diffusion layer thickness,hardness and strength using response surface methodology.It is found that bonding temperature has predominant effect on bond characteristics.Joints fabricated at a bonding temperature of 450℃, bonding pressure of 12 MPa and bonding time of 30 min exhibited maximum shear strength and bonding strength of 66 and 81 MPa, respectively.
基金the financia supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natura Science Foundation of China (Nos. 52171024 51771234, 51601228)。
文摘The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc doped inθ′slab(S2 site))were modeled based on calculated results and reported experiments.Through the analysis of interfacial bonding strength,it is revealed that the doping of Sc at S1 site can significantly decrease the interface energy and increase the work of adhesion.In particular,the doped coherent interface with Sc at S1 site which is occupied by interstitial Cu atoms has very good bonding strength.The electronic structure shows the strong Al—Cu bonds at the interfaces with Sc at S1 site,and the Al—Al bonds at the interfaces with Sc at S2 site are formed.The formation of strong Al—Cu and Al—Al bonds plays an important role in the enhancement of doped interface strength.
基金financially supported by the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology,China (No.SAST2020-117)。
文摘Diffusion bonding of as-cast Mg−6Gd−3Y magnesium alloy was carried out at temperatures of 400−480℃ with bonding pressure of 6 MPa for 90 min.Diffusion bonded joints were solution treated at 495℃ for 14 h and then aged at 200℃ for 30 h.Microstructures and mechanical properties of joints were analyzed.The results showed that rare earth elements and their compounds gathering at bonding interface hindered the grain boundary migration crossing bonding interface.Tensile strength of as-bonded and as-solution treated joints increased firstly and then decreased with the bonding temperature increasing due to the combined effects of grain coarsening and solid-solution strengthening.As-bonded and solution-treated joints fractured at matrix except the joint bonded at 400℃,while aged joints fractured at bonding interface.The highest ultimate tensile strength of 279 MPa with elongation of 2.8%was found in joint bonded at 440℃ with solution treatment followed by aging treatment.
基金the Education Fund of Zhejiang Province(No.20030758)
文摘Influence of fabric geometrical parameters,including the number of filling yarns per 10 cm,yarn twist and fiber type,on bonding of the fabric reinforced cement composites is studied by fabric pull-out test and SEM microstructure analysis.The results show that the bonding strength increase with the increase of the number of filling yarns per 10 cm in the range of this study.But the influence of fabric count on the interfacial bonding is dual and there is a critical value.The twist of yarns has a little effect on the bonding strength and interfacial bonding behaves of nylon fabric reinforced cement composites.There is an optimum twist range.Within this range,the bonding strength increase slowly with the increase of yarn twist.Beyond this range,it is versus.The bonding strength is strongly affected by the fabric character.The bonding between the nylon fiber fabric and cement is good;that of between glass fiber fabric and cement is moderate and that of between the carbon fiber fabric and cement is poor.