In Arabidopsis thaliana,canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR(ARF)family that interact with auxin/indole acetic acid repressors(Aux/IAAs),whic...In Arabidopsis thaliana,canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR(ARF)family that interact with auxin/indole acetic acid repressors(Aux/IAAs),which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR*!/AUXIN-SIGNALLING F-BOX(TIR1/AFB)proteins.Different combinations of co-receptors drive specific sensing outputs,allowing auxin to control a myriad of processes.ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate,but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown.Here,using loss-of-function mutants we show that three Aux/IAA genes,IAA6,IAA9,and IAA17,act additively in the control of adventitious root(AR)initiation.These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development.We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid(JA)biosynthesis and conjugation,as several JA biosynthesis genes are up-regulated in the tir1-1 mutant.These results lead us to propose that in the presence of auxin,TIR1 and AFB2 form specific sensing complexes with IAA6,IAA9,and/or IAA17 to modulate JA homeostasis and control AR initiation.展开更多
Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the m...Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars.展开更多
BACKGROUND:It has been shown that interleukin-1 (IL-1) may cause inflammatory reactions, which stimulate the nerve root of patients with lumbar intervertebral disc protrusion and leads to pain. Whether the clinical...BACKGROUND:It has been shown that interleukin-1 (IL-1) may cause inflammatory reactions, which stimulate the nerve root of patients with lumbar intervertebral disc protrusion and leads to pain. Whether the clinical curative effects of acupuncture in the treatment of lumbar and leg pain are linked to an inhibition of local IL-1 secretion is unknown. OBJECTIVE: To assess the influence of acupuncture on IL-1, this study was designed to verify the effects of acupuncture at the "Huatuojiaji (Extra)" point on the nerve root in a rat model of lumbar nerve root compression, compared with administration of meloxicam, a non-steroidal anti-inflammatory drug. DESIGN, TIME AND SETTING: Randomized, controlled, molecular biology experiment, performed at the Experimental Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University between September 2005 and April 2006. MATERIALS: Forty healthy adult Sprague Dawley rats of either gender were included in this study. The rats were randomly and evenly divided into the following four groups: normal control, model, acupuncture and meloxicam groups. Lumbar nerve root compression was induced in rats in the model, acupuncture, and meloxicam groups by inserting a specially made silicon rubber slice at the juncture of the L5 nerve root and the dural sac. The acupuncture needle (pattern number N3030, 30#, 1.5 inch) was purchased from Suzhou Medical Appliance Factory, China. IL-1 enzyme linked immunosorbent assay (ELISA) kit was purchased from Santa Cruz Biotechnology, Inc., USA. METHODS: The acupuncture group was acupunctured at the "Huatuojiaji" point, which is lateral to the compressed L5-6 nerve root, with an acupuncture depth of 0.5 cm. There were two treatment courses, each of involved seven 20-minute acupuncture sessions, one session a day. The meloxicam group was administered intragastrically 3.75 mg/kg meloxicam (5 mg meloxicam /10 mL physiological saline). Rats in the normal control group and model group received an intragastric administration of 10 mL/kg physiological saline. All administrations were performed once a day. MAIN OUTCOME MEASURES: At day 14 post-surgery, the IL-1 level in the compressed nerve root was determined by a streptavidin-peroxidase (S-P) immunohistochemical method, and IL-1β mRNA expression in the compressed nerve root was simultaneously detected by real-time reverse transcription-polymerase chain reaction. RESULTS: The expression levels of IL-1 and IL-1β mRNA in the L5 nerve root were significantly higher in the model group than in the control group (P 〈 0.01). However, the expression levels of IL-1 and IL-1β mRNA were significantly lower in the acupuncture and meloxicam groups than in the model group (P 〈 0.05–0.01). Expression levels of IL-1 and IL-1β mRNA were significantly higher in the acupuncture group than in the meloxicam group (P 〈 0.01). CONCLUSION: Acupuncture at the "Huatuojiaji" point decreases the IL-1 level by inhibiting IL-1β mRNA expression to a greater extent than meloxicam administration.展开更多
The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development...The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-l-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP- ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.展开更多
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in t...Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.展开更多
[Objective] This study aimed to study the resistance of grafted tomato with Guozhen 1 as stock against root knot nematodes. [Method] Tomato seedlings were grafted with Guozhenl (T1) and Solanum torvum (T2) as the ...[Objective] This study aimed to study the resistance of grafted tomato with Guozhen 1 as stock against root knot nematodes. [Method] Tomato seedlings were grafted with Guozhenl (T1) and Solanum torvum (T2) as the rootstock, respectively. Self-rooted tomato seedlings were treated as the control (CK). The resistance of tomato against root knot nematodes was compared among the three treatments. [Result] Compared with those in the T2 and CK groups, the yield of tomato in the T1 group was increased by 17 436.75 and 31 753.65 kg/hm2 respectively, the plant height was increased by 10.55 and 14.54 cm respectively (P〈0.05), and the stem diameter was increased by 0.56 and 1.13 cm respectively (P〈0.05). The disease indexes of root knot nematodiasis in the three treatments were 0.55, 10.42 and 45.31, respectively, and there were significant differences among them (P〈0.05). [Conclusion] This study will provide a theoretical basis for the control of root knot nematodes in tomato by grafting.展开更多
Transient receptor potential ankyrin 1 (TRPA1) is a key player in pain and neurogenic inflammation, and is localized in nociceptive primary sensory dorsal root ganglion (DRG) neurons. TRPA1 plays a major role in t...Transient receptor potential ankyrin 1 (TRPA1) is a key player in pain and neurogenic inflammation, and is localized in nociceptive primary sensory dorsal root ganglion (DRG) neurons. TRPA1 plays a major role in the transmission of nociceptive sensory signals. The generation of neurogenic inflammation appears to involve TRPAl-evoked release of calcitonin gene-related peptide (CGRP). However, it remains unknown whether TRPA1 or CGRP expression is affected by TRPA 1 activation. Thus, in this study, we examined TRPA 1 and CGRP expression in DRG neurons in vitro after treatment with the TRPA1 activator tbrmaldehyde or the TRPA1 blocker menthol. In addition, we examined the role of extracellular signal-regulated protein kinase 1/2 (ERK1/2) in this process. DRG neurons in culture were exposed to formaldehyde, menthol, the ERK1/2 inhibitor PD98059 + formaldehyde, or PD98059 + menthol. After treatment, real-time polymerase chain reaction, western blot assay and double immunofluorescence labeling were performed to evaluate TRPA1 and CGRP expression in DRG neurons. Formaldehyde elevated mRNA and protein levels of TRPA 1 and CGRP, as well as the proportion of TRPA1- and CGRP-positive neurons. In contrast, menthol reduced TRPA1 and CGRP expression. Furthermore, the effects of lbrmaldehyde, but not menthol, on CGRP expression were blocked by pretreatment with PD98059. PD98059 pretreatment did not affect TRPA1 expression in the presence of formaldehyde or menthol.展开更多
In order to provide theoretical basis and technical support for the afforestation and artificial water supply of P.szechuanica in arid areas,the characteristics of water consumption of P.szechuanica were explored,and ...In order to provide theoretical basis and technical support for the afforestation and artificial water supply of P.szechuanica in arid areas,the characteristics of water consumption of P.szechuanica were explored,and the law of water demand of P.szechuanica was grasped.In this paper,potted seedlings of 1-0 rooted cuttings of P.szechuanica were taken as research objects,and change situation of water consumption under different water control gradients was measured regularly by using weighing method,further analyzing dynamic change of water consumption of P.szechuanica and revealing water demand law of 1-0 rooted cuttings of P.szechuanica.The results showed that total change of water consumption of 1-0 rooted cuttings of P.szechuanica had"slow-fast-slow-fast"double-peak trend in the growth period of the current year,and corresponded with univariate linear relation(R^(2)=0.7137),with significant difference.In whole growth period,water consumption in August was the highest,which was 2.7 times of that in June and July and 1.5 times of that after September.In different water control treatments,the dynamic changes of daily and monthly water consumption were significantly different.In seven water control treatments,monthly water consumption was between(6315.95±1690.70)and(10105.28±3065.30)g/month,and mean was(8211.07±2308.23)g/month.With intensification of water control treatment,water consumption increased,but there was no seedling death due to water shortage.P.szechuanica has great plasticity in water demand,and can survive in both arid and humid environments.Meanwhile,it is revealed that P.szechuanica is the most widely distributed tree species in the region.展开更多
文摘In Arabidopsis thaliana,canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR(ARF)family that interact with auxin/indole acetic acid repressors(Aux/IAAs),which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR*!/AUXIN-SIGNALLING F-BOX(TIR1/AFB)proteins.Different combinations of co-receptors drive specific sensing outputs,allowing auxin to control a myriad of processes.ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate,but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown.Here,using loss-of-function mutants we show that three Aux/IAA genes,IAA6,IAA9,and IAA17,act additively in the control of adventitious root(AR)initiation.These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development.We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid(JA)biosynthesis and conjugation,as several JA biosynthesis genes are up-regulated in the tir1-1 mutant.These results lead us to propose that in the presence of auxin,TIR1 and AFB2 form specific sensing complexes with IAA6,IAA9,and/or IAA17 to modulate JA homeostasis and control AR initiation.
基金supported by the State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-4)the Key Research and Development Projects of Hebei Province(21326319D)。
文摘Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars.
文摘BACKGROUND:It has been shown that interleukin-1 (IL-1) may cause inflammatory reactions, which stimulate the nerve root of patients with lumbar intervertebral disc protrusion and leads to pain. Whether the clinical curative effects of acupuncture in the treatment of lumbar and leg pain are linked to an inhibition of local IL-1 secretion is unknown. OBJECTIVE: To assess the influence of acupuncture on IL-1, this study was designed to verify the effects of acupuncture at the "Huatuojiaji (Extra)" point on the nerve root in a rat model of lumbar nerve root compression, compared with administration of meloxicam, a non-steroidal anti-inflammatory drug. DESIGN, TIME AND SETTING: Randomized, controlled, molecular biology experiment, performed at the Experimental Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University between September 2005 and April 2006. MATERIALS: Forty healthy adult Sprague Dawley rats of either gender were included in this study. The rats were randomly and evenly divided into the following four groups: normal control, model, acupuncture and meloxicam groups. Lumbar nerve root compression was induced in rats in the model, acupuncture, and meloxicam groups by inserting a specially made silicon rubber slice at the juncture of the L5 nerve root and the dural sac. The acupuncture needle (pattern number N3030, 30#, 1.5 inch) was purchased from Suzhou Medical Appliance Factory, China. IL-1 enzyme linked immunosorbent assay (ELISA) kit was purchased from Santa Cruz Biotechnology, Inc., USA. METHODS: The acupuncture group was acupunctured at the "Huatuojiaji" point, which is lateral to the compressed L5-6 nerve root, with an acupuncture depth of 0.5 cm. There were two treatment courses, each of involved seven 20-minute acupuncture sessions, one session a day. The meloxicam group was administered intragastrically 3.75 mg/kg meloxicam (5 mg meloxicam /10 mL physiological saline). Rats in the normal control group and model group received an intragastric administration of 10 mL/kg physiological saline. All administrations were performed once a day. MAIN OUTCOME MEASURES: At day 14 post-surgery, the IL-1 level in the compressed nerve root was determined by a streptavidin-peroxidase (S-P) immunohistochemical method, and IL-1β mRNA expression in the compressed nerve root was simultaneously detected by real-time reverse transcription-polymerase chain reaction. RESULTS: The expression levels of IL-1 and IL-1β mRNA in the L5 nerve root were significantly higher in the model group than in the control group (P 〈 0.01). However, the expression levels of IL-1 and IL-1β mRNA were significantly lower in the acupuncture and meloxicam groups than in the model group (P 〈 0.05–0.01). Expression levels of IL-1 and IL-1β mRNA were significantly higher in the acupuncture group than in the meloxicam group (P 〈 0.01). CONCLUSION: Acupuncture at the "Huatuojiaji" point decreases the IL-1 level by inhibiting IL-1β mRNA expression to a greater extent than meloxicam administration.
基金Acknowledgments This work was supported by the Key Basic Research Special Foundation of China (2005CB20900), the National High Technology Research and Development Program (2007AA021403, 2006AA10Z 175), the National Natural Science Foundation of China (30471118 and 30770191) and the Specialized Research Fund for the Doctoral Program of Higher Education (20070335081).
文摘The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-l-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP- ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.
基金supported by the Youth Shihezi University Applied Basic Research Project of China,No.2015ZRKYQ-LH19
文摘Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
基金Supported by Science and Technology Support Program of Chengde City,Hebei Province(201602B030)~~
文摘[Objective] This study aimed to study the resistance of grafted tomato with Guozhen 1 as stock against root knot nematodes. [Method] Tomato seedlings were grafted with Guozhenl (T1) and Solanum torvum (T2) as the rootstock, respectively. Self-rooted tomato seedlings were treated as the control (CK). The resistance of tomato against root knot nematodes was compared among the three treatments. [Result] Compared with those in the T2 and CK groups, the yield of tomato in the T1 group was increased by 17 436.75 and 31 753.65 kg/hm2 respectively, the plant height was increased by 10.55 and 14.54 cm respectively (P〈0.05), and the stem diameter was increased by 0.56 and 1.13 cm respectively (P〈0.05). The disease indexes of root knot nematodiasis in the three treatments were 0.55, 10.42 and 45.31, respectively, and there were significant differences among them (P〈0.05). [Conclusion] This study will provide a theoretical basis for the control of root knot nematodes in tomato by grafting.
基金supported by the National Natural Science Foundation of China,No.81501935(to HL)the Natural Science Foundation of Shandong Province of China,No.ZR2014HQ065(to HL)
文摘Transient receptor potential ankyrin 1 (TRPA1) is a key player in pain and neurogenic inflammation, and is localized in nociceptive primary sensory dorsal root ganglion (DRG) neurons. TRPA1 plays a major role in the transmission of nociceptive sensory signals. The generation of neurogenic inflammation appears to involve TRPAl-evoked release of calcitonin gene-related peptide (CGRP). However, it remains unknown whether TRPA1 or CGRP expression is affected by TRPA 1 activation. Thus, in this study, we examined TRPA 1 and CGRP expression in DRG neurons in vitro after treatment with the TRPA1 activator tbrmaldehyde or the TRPA1 blocker menthol. In addition, we examined the role of extracellular signal-regulated protein kinase 1/2 (ERK1/2) in this process. DRG neurons in culture were exposed to formaldehyde, menthol, the ERK1/2 inhibitor PD98059 + formaldehyde, or PD98059 + menthol. After treatment, real-time polymerase chain reaction, western blot assay and double immunofluorescence labeling were performed to evaluate TRPA1 and CGRP expression in DRG neurons. Formaldehyde elevated mRNA and protein levels of TRPA 1 and CGRP, as well as the proportion of TRPA1- and CGRP-positive neurons. In contrast, menthol reduced TRPA1 and CGRP expression. Furthermore, the effects of lbrmaldehyde, but not menthol, on CGRP expression were blocked by pretreatment with PD98059. PD98059 pretreatment did not affect TRPA1 expression in the presence of formaldehyde or menthol.
基金Supported by Natural Science Foundation of Tibet Autonomous Region(XZ2019ZRG-58)Forestry Discipline Innovation Team Construction Project of Tibet Agriculture&Animal Husbandry University(Tibet Financial Forecast:2020-001).
文摘In order to provide theoretical basis and technical support for the afforestation and artificial water supply of P.szechuanica in arid areas,the characteristics of water consumption of P.szechuanica were explored,and the law of water demand of P.szechuanica was grasped.In this paper,potted seedlings of 1-0 rooted cuttings of P.szechuanica were taken as research objects,and change situation of water consumption under different water control gradients was measured regularly by using weighing method,further analyzing dynamic change of water consumption of P.szechuanica and revealing water demand law of 1-0 rooted cuttings of P.szechuanica.The results showed that total change of water consumption of 1-0 rooted cuttings of P.szechuanica had"slow-fast-slow-fast"double-peak trend in the growth period of the current year,and corresponded with univariate linear relation(R^(2)=0.7137),with significant difference.In whole growth period,water consumption in August was the highest,which was 2.7 times of that in June and July and 1.5 times of that after September.In different water control treatments,the dynamic changes of daily and monthly water consumption were significantly different.In seven water control treatments,monthly water consumption was between(6315.95±1690.70)and(10105.28±3065.30)g/month,and mean was(8211.07±2308.23)g/month.With intensification of water control treatment,water consumption increased,but there was no seedling death due to water shortage.P.szechuanica has great plasticity in water demand,and can survive in both arid and humid environments.Meanwhile,it is revealed that P.szechuanica is the most widely distributed tree species in the region.