As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ...Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.展开更多
High-accuracy position monitoring of key components is required for modern synchrotron sources,such as free-electron lasers and diffraction-limited storage rings.Although various position monitoring sensors have been ...High-accuracy position monitoring of key components is required for modern synchrotron sources,such as free-electron lasers and diffraction-limited storage rings.Although various position monitoring sensors have been adopted to monitor the displacement of key components in each direction in real time,these monitoring systems are usually based on their own coordinate system.Data from such systems are meaningful when evaluating and examining the data from each positioning monitoring system in a unified coordinate system.This paper presents the design and construction of a multi-sensor position monitoring system(MPMS).A hydrostatic levelling system,a wire position sensor(WPS) and a tiltmeter are fixed to a stainless steel plate that has been calibrated by a coordinate-measurement machine.Several plates form the MPMS.The system must compensate for the sag of the stretched wires so that the WPSs create a straight line.The method of the coordinate transformation from the sensor coordinate system to the MPMS coordinate system was thoroughly studied.An experimental MPMS that includes five plates was setup in a 20-m tunnel,and a validation study to verify fully the feasibility of the MPMS was performed.展开更多
Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for positi...Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.展开更多
This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes ar...This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes are already known, a circular belt containing an unknown node is obtained using information about the anchor nodes that are in radio range of the unknown node, based on the geometric relationships and communication constraints among the unknown node and the anchor nodes. Then, the centroid of the circular belt is taken to be the estimated position of the unknown node. Since the algorithm is very simple and since the only communication needed is between the anchor nodes and the unknown node, the communication and computational loads are very small. Furthermore, the algorithm is robust because neither the failure of old unknown nodes nor the addition of new unknown nodes influences the positioning of unknown nodes to be located. A theoretical analysis and simulation results show that the algorithm does not produce any cumulative error and is insensitive to range error, and that a change in the number of sensor nodes does not affect the communication or computational load. These features make this algorithm suitable for all sizes of low-power wireless sensor networks.展开更多
To know the location of nodes is very important and valuable for wireless sensor networks (WSN), we present an improved positioning model (3D-PMWSN) to locate the nodes in WSN. In this model, grid in space is presente...To know the location of nodes is very important and valuable for wireless sensor networks (WSN), we present an improved positioning model (3D-PMWSN) to locate the nodes in WSN. In this model, grid in space is presented. When one tag is detected by a certain reader whose position is known, the tag’s position can be known through certain algorithm. The error estimation is given. Emulation shows that the positioning speed is relatively fast and positioning precision is relatively high.展开更多
In order to realize the micromation of position sensors, and extend the application area into micro scale, this paper designs a novel micro position sensor, Mace SAW (Surface Acoustic Wave) position sensor, which can ...In order to realize the micromation of position sensors, and extend the application area into micro scale, this paper designs a novel micro position sensor, Mace SAW (Surface Acoustic Wave) position sensor, which can be fabricated with MEMS technology. Its key components are IDTs (Interdigital Transducers) and reflective grooves. The structure and working principles of the sensor are introduced theoretically, and the manufacture process is then put forward.展开更多
Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile term...Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile terminal system in an intellectualized building. It can provide its holder such functions: 1) Accurate Positioning 2) Intelligent Navigation 3) Video Monitoring 4) Wireless Communication. The inno-vative point for this paper is to apply the multi-core computing on the embedded system to promote its com-puting speed and give a real-time performance and apply this system into the indoor environment for the purpose of emergent event or rescuing.展开更多
An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the ca...An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.展开更多
The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to de...The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to detect running vehicle position for synchronized current generation. To maintain the stable levitating condition during vehicle running, the irregularity of guideway surface should be monitored by sensors measuring the displacement and acceleration between vehicle and guideway. In this study, the application methods of these sensors in the high speed maglev are investigated and through the experiments by using the small-scale test bed, the validity of examined methods is confirmed.展开更多
In this paper, a method for sensor placement to improve the placement quality based on angle of arrival of signal in a specific area is proposed. The installation place of sensors may be constrained with specified bou...In this paper, a method for sensor placement to improve the placement quality based on angle of arrival of signal in a specific area is proposed. The installation place of sensors may be constrained with specified boundaries. In this me-thod, the criterion of maximum quality of placement is the Cramer-Rao bound. The generalized pattern search as an effective method is used to maximize error bound of the placement problem by angle of arrival. Better results are ob-tained in comparison with results of genetic algorithm. The derived results are compared from two aspects of run time and result quality.展开更多
We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary curre...We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.展开更多
This paper introduces a design to improve the radiotherapy accuracy of gamma knife. In this design, sensor is used to collect respiratory parameters and tumor displacement (caused by human respiration) model is establ...This paper introduces a design to improve the radiotherapy accuracy of gamma knife. In this design, sensor is used to collect respiratory parameters and tumor displacement (caused by human respiration) model is established through optimization modeling. At the same time, data are transferred to single chip microcomputer (SCM) system by pressure sensor and then stepping motor is controlled by SCM. Finally, the intelligent positioning bed is under the control of stepping motor. As a result, the intelligent positioning bed can move reverse to respiratory law. The experimental results showed that this method can reduce the influence of respiration on tumor displacement, improving the accuracy of intelligent positioning bed with simple circuit and low cost at the same time.展开更多
The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication sys...The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
As a result of the lower backing weld efficiency, the applying of automatic welding is seriously limited. So a kind of special automatic welder is designed and manufactured for backing weld. This paper introduces the ...As a result of the lower backing weld efficiency, the applying of automatic welding is seriously limited. So a kind of special automatic welder is designed and manufactured for backing weld. This paper introduces the character of the assembled pulse CO2 arc welding machine which has strong penetrability. It specifies the technology of controlling the parameters of all position automatic welding by computer and multi-axis controller. Moreover typical welding procedure parameters are provided. It is proved by examination that the economical and practical equipment and technology are suitable for the long-distance transmission pipeline, and it has a good foreground of spreading and applying.展开更多
The magnhc network model of a hybrid step motor is established by the air gap rate permeance method,and the expression of harmonic back EMF is deduced, and from the analysis above, a vovel use of harmonic backEMF sed ...The magnhc network model of a hybrid step motor is established by the air gap rate permeance method,and the expression of harmonic back EMF is deduced, and from the analysis above, a vovel use of harmonic backEMF sed to extract rotor peition is proposed and a new position sensor integral with the motoris designed .Experi-ments verified the correctness of the theorecal analysis. Ths type of rotor position sensor lays a foundation for closed-loop conrol of step motor.展开更多
With the recent introduction of NarrowBand Internet of Things(NB-IoT)technology in the 4th and 5th generations of mobile radio networks,the mobile communications context opens up significantly to the world of sensors....With the recent introduction of NarrowBand Internet of Things(NB-IoT)technology in the 4th and 5th generations of mobile radio networks,the mobile communications context opens up significantly to the world of sensors.By means of NB-IoT,the mobile systems within 3GPP standardization introduce the peculiar functions of sensor networks,thus making it possible to satisfy very specific requirements with respect to those which characterize traditional mobile telecommunications.Among the functions of interest for sensor networks,the possibility of locating the positions of the sensors without an increase in costs and energy consumption of the sensor nodes is of utmost interest.The present work describes a procedure for locating the NB-IoT nodes based on the quality of radio signals received by the mobile terminals,which therefore does not require further hardware implementations on board the nodes.This procedure,based on the RF fingerprinting technique and on machine learning processing,has been tested experimentally and has achieved interesting performances.展开更多
The accuracy of the position measurements obtained by the radiation positioning system (RADPOS) was evaluated under static and dynamic conditions. In the static verifications, the RADPOS was fixed to the treatment cou...The accuracy of the position measurements obtained by the radiation positioning system (RADPOS) was evaluated under static and dynamic conditions. In the static verifications, the RADPOS was fixed to the treatment couch in a photon treatment room and a proton treatment room, and was translocated with the treatment couch in x, y and z directions. Because the presence of magnetic and/or electrically conductive materials can cause a systematic shift in the measured position by distorting the RADPOS transmitted field, the effect of metals on the performance of the positioning system was also investigated. Dynamic verification was performed using the couch drive and a dynamic anthropomorphic thorax phantom. We thus confirmed the utility of RADPOS as a position sensor to perform in vivo dosimetry.展开更多
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id...Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.展开更多
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金supported by the National Natural Science Foundation of China under(Grant No.52175531)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant(Grant Nos.KJQN202000605 and KJZD-M202000602)。
文摘Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.
基金supported by the National Natural Science Foundation of China(No.11275192)the upgrade project of Hefei Light Source
文摘High-accuracy position monitoring of key components is required for modern synchrotron sources,such as free-electron lasers and diffraction-limited storage rings.Although various position monitoring sensors have been adopted to monitor the displacement of key components in each direction in real time,these monitoring systems are usually based on their own coordinate system.Data from such systems are meaningful when evaluating and examining the data from each positioning monitoring system in a unified coordinate system.This paper presents the design and construction of a multi-sensor position monitoring system(MPMS).A hydrostatic levelling system,a wire position sensor(WPS) and a tiltmeter are fixed to a stainless steel plate that has been calibrated by a coordinate-measurement machine.Several plates form the MPMS.The system must compensate for the sag of the stretched wires so that the WPSs create a straight line.The method of the coordinate transformation from the sensor coordinate system to the MPMS coordinate system was thoroughly studied.An experimental MPMS that includes five plates was setup in a 20-m tunnel,and a validation study to verify fully the feasibility of the MPMS was performed.
基金supported by National Natural Science Foundation of China(Grant No.51175362)
文摘Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.
基金This work was supported by the National Science Foundation of P.R.China(No.60425310)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education,P.R.China (TRAPOYT).
文摘This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes are already known, a circular belt containing an unknown node is obtained using information about the anchor nodes that are in radio range of the unknown node, based on the geometric relationships and communication constraints among the unknown node and the anchor nodes. Then, the centroid of the circular belt is taken to be the estimated position of the unknown node. Since the algorithm is very simple and since the only communication needed is between the anchor nodes and the unknown node, the communication and computational loads are very small. Furthermore, the algorithm is robust because neither the failure of old unknown nodes nor the addition of new unknown nodes influences the positioning of unknown nodes to be located. A theoretical analysis and simulation results show that the algorithm does not produce any cumulative error and is insensitive to range error, and that a change in the number of sensor nodes does not affect the communication or computational load. These features make this algorithm suitable for all sizes of low-power wireless sensor networks.
文摘To know the location of nodes is very important and valuable for wireless sensor networks (WSN), we present an improved positioning model (3D-PMWSN) to locate the nodes in WSN. In this model, grid in space is presented. When one tag is detected by a certain reader whose position is known, the tag’s position can be known through certain algorithm. The error estimation is given. Emulation shows that the positioning speed is relatively fast and positioning precision is relatively high.
文摘In order to realize the micromation of position sensors, and extend the application area into micro scale, this paper designs a novel micro position sensor, Mace SAW (Surface Acoustic Wave) position sensor, which can be fabricated with MEMS technology. Its key components are IDTs (Interdigital Transducers) and reflective grooves. The structure and working principles of the sensor are introduced theoretically, and the manufacture process is then put forward.
文摘Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile terminal system in an intellectualized building. It can provide its holder such functions: 1) Accurate Positioning 2) Intelligent Navigation 3) Video Monitoring 4) Wireless Communication. The inno-vative point for this paper is to apply the multi-core computing on the embedded system to promote its com-puting speed and give a real-time performance and apply this system into the indoor environment for the purpose of emergent event or rescuing.
文摘An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.
文摘The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to detect running vehicle position for synchronized current generation. To maintain the stable levitating condition during vehicle running, the irregularity of guideway surface should be monitored by sensors measuring the displacement and acceleration between vehicle and guideway. In this study, the application methods of these sensors in the high speed maglev are investigated and through the experiments by using the small-scale test bed, the validity of examined methods is confirmed.
文摘In this paper, a method for sensor placement to improve the placement quality based on angle of arrival of signal in a specific area is proposed. The installation place of sensors may be constrained with specified boundaries. In this me-thod, the criterion of maximum quality of placement is the Cramer-Rao bound. The generalized pattern search as an effective method is used to maximize error bound of the placement problem by angle of arrival. Better results are ob-tained in comparison with results of genetic algorithm. The derived results are compared from two aspects of run time and result quality.
文摘We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.
文摘This paper introduces a design to improve the radiotherapy accuracy of gamma knife. In this design, sensor is used to collect respiratory parameters and tumor displacement (caused by human respiration) model is established through optimization modeling. At the same time, data are transferred to single chip microcomputer (SCM) system by pressure sensor and then stepping motor is controlled by SCM. Finally, the intelligent positioning bed is under the control of stepping motor. As a result, the intelligent positioning bed can move reverse to respiratory law. The experimental results showed that this method can reduce the influence of respiration on tumor displacement, improving the accuracy of intelligent positioning bed with simple circuit and low cost at the same time.
文摘The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
文摘As a result of the lower backing weld efficiency, the applying of automatic welding is seriously limited. So a kind of special automatic welder is designed and manufactured for backing weld. This paper introduces the character of the assembled pulse CO2 arc welding machine which has strong penetrability. It specifies the technology of controlling the parameters of all position automatic welding by computer and multi-axis controller. Moreover typical welding procedure parameters are provided. It is proved by examination that the economical and practical equipment and technology are suitable for the long-distance transmission pipeline, and it has a good foreground of spreading and applying.
文摘The magnhc network model of a hybrid step motor is established by the air gap rate permeance method,and the expression of harmonic back EMF is deduced, and from the analysis above, a vovel use of harmonic backEMF sed to extract rotor peition is proposed and a new position sensor integral with the motoris designed .Experi-ments verified the correctness of the theorecal analysis. Ths type of rotor position sensor lays a foundation for closed-loop conrol of step motor.
文摘With the recent introduction of NarrowBand Internet of Things(NB-IoT)technology in the 4th and 5th generations of mobile radio networks,the mobile communications context opens up significantly to the world of sensors.By means of NB-IoT,the mobile systems within 3GPP standardization introduce the peculiar functions of sensor networks,thus making it possible to satisfy very specific requirements with respect to those which characterize traditional mobile telecommunications.Among the functions of interest for sensor networks,the possibility of locating the positions of the sensors without an increase in costs and energy consumption of the sensor nodes is of utmost interest.The present work describes a procedure for locating the NB-IoT nodes based on the quality of radio signals received by the mobile terminals,which therefore does not require further hardware implementations on board the nodes.This procedure,based on the RF fingerprinting technique and on machine learning processing,has been tested experimentally and has achieved interesting performances.
文摘The accuracy of the position measurements obtained by the radiation positioning system (RADPOS) was evaluated under static and dynamic conditions. In the static verifications, the RADPOS was fixed to the treatment couch in a photon treatment room and a proton treatment room, and was translocated with the treatment couch in x, y and z directions. Because the presence of magnetic and/or electrically conductive materials can cause a systematic shift in the measured position by distorting the RADPOS transmitted field, the effect of metals on the performance of the positioning system was also investigated. Dynamic verification was performed using the couch drive and a dynamic anthropomorphic thorax phantom. We thus confirmed the utility of RADPOS as a position sensor to perform in vivo dosimetry.
基金This research was supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2020-2016-0-00313)supervised by the Institute for Information&communications Technology Planning&Evaluation(IITP)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.